精英家教网 > 初中数学 > 题目详情

已知:如图,?ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G.
求证:(1)AB=BH;
(2)AB2=GA•HE.

证明:
(1)∵?ABCD中,DE⊥BC,∠DBC=45°,
∴∠DEC=∠BEH=90°,DE=BE.
∵∠EBH+∠BHE=90°,∠DHF+∠CDE=90°,
∴∠EBH=∠EDC.
∴△BEH≌△DEC.
∴BH=DC.
∵DC=AB,
∴AB=BH.

(2)∵四边形ABCD是平行四边形,
∴AG∥BC,∠A=∠C=∠BHE.
∴∠G=∠HBE.
∴△BEH∽△GBA.
∴BH•AB=EH•AG.
∵BH=DC=AB,
∴AB2=GA•HE.
分析:根据已知利用AAS判定△BEH≌△DEC,从而得到BH=DC,由平行四边形的性质得DC=AB,则可以得到AB=BH;根据两组角对应相等的两个三角形相似得到△BEH∽△GBA,相似三角形的对应边成比例所以BH•AB=EH•AG,由于BH=DC=AB所以推出了AB2=GA•HE.
点评:此题主要考查学生对平行四边形的性质及全等三角形的判定,相似三角形的判定的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案