【题目】如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且AB=20,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>0)秒.
(1)写出数轴上点表示的数______;点表示的数_______(用含的代数式表示)
(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点、同时出发,问多少秒时、之间的距离恰好等于?
(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问多少秒时、span>之间的距离恰好又等于?
(4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段的长.
【答案】(1),;(2)2.25或2.75;(3)9或11;(4)不变,MN=10.
【解析】
(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;
(2)设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;
(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;
(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.
(1)∵点A表示的数为8,B在A点左边,AB=20,
∴点B表示的数是8-20=-12,
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,
∴点P表示的数是8-5t.
故答案为:-12,8-5t;
(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:
①点P、Q相遇之前,
由题意得3t+2+5t=20,解得t=2.25;
②点P、Q相遇之后,
由题意得3t-2+5t=20,解得t=2.75.
答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2;
(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:
①点P、Q相遇之前,
则5x-3x=20-2,
解得:x=9;
②点P、Q相遇之后,
则5x-3x=20+2
解得:x=11.
答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2;
(4)线段MN的长度不发生变化,都等于10;理由如下:
①当点P在点A、B两点之间运动时:
MN=MP+NP=AP+BP=(AP+BP)=AB=×20=10,
②当点P运动到点B的左侧时:
MN=MP-NP=AP-BP=(AP-BP)AB=10,
则线段MN的长度不发生变化,其值为10.
科目:初中数学 来源: 题型:
【题目】抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表:(表中“元/吨千米”表示每吨粮食运送1千米所需人民币)
路程(千米) | 运费(元/吨千米) | |||
甲库 | 乙库 | 甲库 | 乙库 | |
A库 | 20 | 15 | 12 | 12 |
B库 | 25 | 20 | 10 | 8 |
(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;
(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对于二次函数y=ax2+bx+c(a≠0)的图象,得出了下面五条信息:①c>0;②b=6a;③b2﹣4ac>0;④a+b+c<0;⑤对于图象上的两点(﹣6,m )、(1,n),有m<n.其中正确信息的个数有( )
A.2个
B.3个
C.4个
D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形BCDE的各边分别平行于x轴与y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2019次相遇地点的坐标是( )
A. (1,﹣1)B. (2,0)C. (﹣1,1)D. (﹣1,﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙三位同学分别正确指出了某一个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:每第一个象限内,y值随x值的增大而减小.根据他们的描述,这个函数表达式可能是( )
A.y=2x
B.y=
C.y=﹣
D.y=2x2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】穿越青海境内的兰新高速铁路正在加紧施工.某工程队承包了一段全长1957米的隧道工程,甲、乙两个班组分别从南北两端同时掘进,已知甲组比乙组每天多掘进0.5米,经过6天施工,甲、乙两组共掘进57米.
(1)求甲乙两班组平均每天各掘进多少米?
(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天比原来多掘进0.3米,乙组平均每天比原来多掘进0.2米.按此施工进度,能够比原来少用多少天完成任务?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是某同学对多项式(x2-4x-3)(x2-4x+1)+4进行因式分解的过程.
解:设x2-4x=y
原式=(y-3)(y+1)+4 (第一步)
= y2-2y+1 (第二步)
=(y-1)2 (第三步)
=(x2-4x-1)2 (第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的_______.
A.提取公因式法 B.平方差公式法 C.完全平方公式法
(2)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+2)+1进行因式分解.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com