精英家教网 > 初中数学 > 题目详情

【题目】已知ABC是边长为4的等边三角形,边AB在射线OM上,且OA6,点D是射线OM上的动点,当点D不与点A重合时,将ACD绕点C逆时针方向旋转60°得到BCE,连接DE

1)如图1,求证:CDE是等边三角形.

2)设ODt

①当6t10时,BDE的周长是否存在最小值?若存在,求出BDE周长的最小值;若不存在,请说明理由.

②求t为何值时,DEB是直角三角形(直接写出结果即可).

【答案】(1)见解析;(2) ①见解析; t=2或14.

【解析】

1)由旋转的性质得到∠DCE=60°DC=EC,即可得到结论;

2)①当6t10时,由旋转的性质得到BE=AD,于是得到CDBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CDAB时,△BDE的周长最小,于是得到结论;

②存在,当点D与点B重合时,DBE不能构成三角形;当0≤t6时,由旋转的性质得到∠ABE=60°,∠BDE60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2=t;当6t10时,此时不存在;当t10时,由旋转的性质得到∠DBE=60°,求得∠BDE60°,于是得到t=14

1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE

∴∠DCE60°DCEC

∴△CDE是等边三角形;

2)①存在,当6t10时,

由旋转的性质得,BEAD

CDBEBE+DB+DEAB+DE4+DE

由(1)知,△CDE是等边三角形,

DECD

CDBECD+4

由垂线段最短可知,当CDAB时,△BDE的周长最小,

此时,CD2

∴△BDE的最小周长=CD+42+4

②存在,∵当点D与点B重合时,DBE不能构成三角形,

∴当点D与点B重合时,不符合题意;

0≤t6时,由旋转可知,∠ABE60°,∠BDE60°

∴∠BED90°

由(1)可知,△CDE是等边三角形,

∴∠DEB60°

∴∠CEB30°

∵∠CEB=∠CDA

∴∠CDA30°

∵∠CAB60°

∴∠ACD=∠ADC30°

DACA4

ODOADA642

t2

6t10时,由∠DBE120°90°

∴此时不存在;

t10时,由旋转的性质可知,∠DBE60°

又由(1)知∠CDE60°

∴∠BDE=∠CDE+BDC60°+BDC

而∠BDC

∴∠BDE60°

∴只能∠BDE90°

从而∠BCD30°

BDBC4

OD14

t14

综上所述:当t214时,以DEB为顶点的三角形是直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某小区规划在长20米,宽10米的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为162米2,问小路应为多宽?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,矩形ABCD中,AB8BC6P是线段BC上一点(P不与B重合),MDB上一点,且BPDM,设BPxMBP的面积为y,则yx之间的函数关系式为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线上的点COB的水平距离为3 m,到地面OA的距离为m.

(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;

(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?

(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了调查八年级学生参加乒乓篮球足球排球四项体育活动的人数,学校从八年级随机抽取了部分学生进行调查,根据调查结果制作了如下不完整的统计表、统计图:

类别

频数(人数)

频率

乒乓

a

0.3

篮球

20

足球

15

b

排球

合计

c

1

请你根据以上信息解答下列各题:

1a   b   c   

2)在扇形统计图中,排球所对应的圆心角是   度;

3)若该校八年级共有600名学生,试估计该校八年级喜欢足球的人数?.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

请根据以上信息回答:

(1)本次参加抽样调查的居民有多少人?

(2)将两幅不完整的图补充完整;

(3)求扇形统计图中C所对圆心角的度数;

(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:梯形ABCD中,AD//BCABBCAD=3AB=6DFDC分别交射线AB、射线CB于点EF.

1)当点E为边AB的中点时(如图1),求BC的长;

2)当点E在边AB上时(如图2),联结CE,试问:∠DCE的大小是否确定?若确定,请求出∠DCE的正切值;若不确定,则设AE=x,∠DCE的正切值为y,请求出y关于x的函数解析式,并写出定义域;

3)当AEF的面积为3时,求DCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CMx轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,连接OD.

(1)求b的值和点D的坐标;

(2)设点P在x轴的正半轴上,若POD是等腰三角形,求点P的坐标;

(3)在(2)的条件下,如果以PD为半径的圆P与圆O外切,求圆O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠ACB45°.点D(与点BC不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF

1)如果ABAC.如图①,且点D在线段BC上运动.试判断线段CFBD之间的位置关系,并证明你的结论.

2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?

3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC4BC3CDx,求线段CP的长.(用含x的式子表示)

查看答案和解析>>

同步练习册答案