精英家教网 > 初中数学 > 题目详情

【题目】如图,某小区规划在长20米,宽10米的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为162米2,问小路应为多宽?

【答案】小路宽1米.

【解析】

设小路宽x米,则其余部分可合成长(20-2x)米、宽(10-x)米的矩形,根据矩形的面积公式结合草坪的面积为1622,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.

设小路宽x米,则其余部分可合成长(202x)米、宽(10x)米的矩形,

根据题意得:(202x)(10x)=162

整理得:x220x+190,即(x1)(x19)=0

解得:x11x219

x19时,10x=﹣9不合题意,

x219舍去.

答:小路宽1米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=6cm,BC=7cm,ABC=30°,点PA点出发,以1cm/s的速度向B点移动,点QB点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.

(1)按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)

(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,∠ACB90°D是边AB的中点,P是边AC上一动点,BPCD相交于点E

1)如果BC6AC8,且PAC的中点,求线段BE的长;

2)联结PD,如果PDAB,且CE2ED3,求cosA的值;

3)联结PD,如果BP22CD2,且CE2ED3,求线段PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知双曲线ym>0)与直线ykx交于AB两点,点A的坐标为(3,2).

(1)由题意可得m的值为   k的值为   ,点B的坐标为   

(2)若点Pn﹣2,n+3)在第一象限的双曲线上,试求出n的值及点P的坐标;

(3)在(2)小题的条件下:如果Mx轴上一点,Ny轴上一点,以点PAMN为顶点的四边形是平行四边形,试求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.

1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);

2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,模块①由15个棱长为1的小正方体构成,模块②-⑥均由4个棱长为1的小正方体构成.现在从模块②-⑥中选出三个模块放到模块①上,与模块①组成一个棱长为的大正方体.下列四个方案中,符合上述要求的是(

A. 模块②,④,⑤ B. 模块③,④,⑥ C. 模块②,⑤,⑥ D. 模块③,⑤,⑥

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABACBAC=54°,以AB为直径的⊙O分别交ACBC于点DE,过点B作直线BF,交AC的延长线于点F

(1)求证:BECE

(2)若AB=6,求弧DE的长;

(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC是边长为4的等边三角形,边AB在射线OM上,且OA6,点D是射线OM上的动点,当点D不与点A重合时,将ACD绕点C逆时针方向旋转60°得到BCE,连接DE

1)如图1,求证:CDE是等边三角形.

2)设ODt

①当6t10时,BDE的周长是否存在最小值?若存在,求出BDE周长的最小值;若不存在,请说明理由.

②求t为何值时,DEB是直角三角形(直接写出结果即可).

查看答案和解析>>

同步练习册答案