精英家教网 > 初中数学 > 题目详情

【题目】如图,在等边△ABC中,AB=6,AD⊥BC于点D.点P在边AB上运动,过点P作PE∥BC,与边AC交于点E,连结ED,以PE、ED为邻边作PEDF.设PEDF与△ABC重叠部分图形的面积为y,线段AP的长为x(0<x<6).

(1)求线段PE的长.(用含x的代数式表示)
(2)当四边形PEDF为菱形时,求x的值.
(3)求y与x之间的函数关系式.
(4)设点A关于直线PE的对称点为点A′,当线段A′B的垂直平分线与直线AD相交时,设其交点为Q,当点P与点Q位于直线BC同侧(不包括点Q在直线BC上)时,直接写出x的取值范围.

【答案】
(1)

解:∵PE∥BC,

∴△APE∽△ABC,

又∵△ABC是等边△,

∴△APE是等边三角形,

∴PE=AP=x(0<x<6);


(2)

解:∵四边形PEDF为菱形,

∴PE=DE=x,

又∵△APE是等边三角形,则AE=PE,

∴AE=DE,

∴∠DAC=∠ADE,

又∵∠ADE+∠EDC=∠DAC+∠C=90°,

∴∠EDC=∠C,

∴DE=EC,

∴DE=EC=AE=AC=AB=3.

即x=3;


(3)

解:当x=3,即P是AB的中点时,PE=BC,则F与B重合.

则当0<x≤3时,重合部分就是平行四边形PEDF,如图1.

等边△ABC中,AD=ABsin60°=6×=3,等边△APE中,AM=APsin60°=x,

则DM=3x,

则y=x(3x),即y=﹣x2+3x;

当3<x<6时,重合部分是梯形PEDB,如图2.

则y=(PE+BD)DM=(x+3)(3x),即y=﹣


(4)

解:情形一:当A′在BC上方时,如图3所示,

当A′B的中垂线正好经过点D时,A′D=BD=3,

则AA′=3-3.

则AM=AA′=(3-3),

∴x=AP==3-

则x的取值范围是:0<x<3-

情形二:当A′在BC上时,PQ∥AD,如图4所示,

AP=A′P=BP=AB=×6=3.

情形三:当A′在BC下方时,如图5所示,

当A′B的中垂线正好经过点D时,A′D=BD=3,

则AA′=3+3.

则AM=AA′=(3+3),

∴x=AP==3+

则x的取值范围是:3<x<3+

综上所示,x的取值范围为0<x<3﹣或3<x<3+


【解析】(1)证明△APE是等边三角形,即可求解;
(2)四边形PEDF为菱形时,AE=DE,然后证明DE=EC即可得到E是AC的中点,则P是AB的中点,据此即可求解;
(3)当x=3,即P是AB的中点时,PE=BC,则F与B重合,当0<x≤3时,重合部分就是平行四边形PEDF,当3<x≤6时,重合部分是梯形PEDB,根据平行四边形和梯形的面积公式即可求解;
(4)首先求得当A'B的中垂线正好经过点D时x的值,据此即可求解.
【考点精析】解答此题的关键在于理解平行线的性质的相关知识,掌握两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,以及对平行四边形的性质的理解,了解平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图(1),抛物线 y=﹣ x2平移后过点A(8,0)和原点,顶点为B,对称轴与x轴相交于点C,与原抛物线相交于点D.

(1)求平移后抛物线的解析式及点D的坐标;
(2)直接写出阴影部分的面积 S阴影
(3)如图(2),直线AB与y轴相交于点P,点M为线段OA上一动点(点M不与点A,O重合 ),∠PMN为直角,MN与AP相交于点N,设OM=t,试探究:t为何值时,△MAN为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:如图①,如果四边形ABCD满足AB=AD,CB=CD,∠B=∠D=90°,那么我们把这样的四边形叫做“完美筝形”.
将一张如图①所示的“完美筝形”纸片ABCD先折叠成如图②所示形状,再展开得到图③,其中CE,CF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB′,FD′相交于点O.

(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是
(2)当图③中的∠BCD=120°时,∠AEB′=
(3)当图②中的四边形AECF为菱形时,对应图③中的“完美筝形”有  个(包含四边形ABCD).
(4)拓展提升:当图③中的∠BCD=90°时,连接AB′,请探求∠AB′E的度数,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.

(1)当4≤x≤12时,求y关于x的函数解析式;
(2)直接写出每分进水,出水各多少升.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+4与x轴交于点A、B两点,与y轴交于点C,且点B的坐标为(3,0),点P在这条抛物线上,且不与B、C两点重合.过点P作y轴的垂线与射线BC交于点Q,以PQ为边作Rt△PQF,使∠PQF=90°,点F在点Q的下方,且QF=1.设线段PQ的长度为d,点P的横坐标为m.

(1)求这条抛物线所对应的函数表达式.
(2)求d与m之间的函数关系式.
(3)当Rt△PQF的边PF被y轴平分时,求d的值.
(4)以OB为边作等腰直角三角形OBD,当0<m<3时,直接写出点F落在△OBD的边上时m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是 ,并运用这个公式求得图2中多边形的面积是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A、B、C及点O均在格点上,请按要求完成以下操作或运算:

(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母)
(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母)
(3)求点A绕着点O旋转到点A2所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.

(1)求抛物线的解析式;
(2)问:当t为何值时,△APQ为直角三角形;
(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标.
(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E,A′两点.

(1)填空:∠AOB= °,用m表示点A′的坐标:A′( );
(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且=时,△D′OE与△ABC是否相似?说明理由;
(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:
①求a,b,m满足的关系式;
②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.

查看答案和解析>>

同步练习册答案