精英家教网 > 初中数学 > 题目详情

【题目】如图,一艘船由A港沿北偏东60°方向航行10kmB港,然后再沿北偏西30°方向航行10kmC港.

1)求AC两港之间的距离(结果保留到0.1km,参考数据:≈1.414≈1.732);

2)确定C港在A港的什么方向.

【答案】1AC两地之间的距离为14.1km;2C港在A港北偏东15°的方向上.

【解析】

(1)根据方位角的定义可得出∠ABC=90°,再根据勾股定理可求得AC的长为14.1.

(2)由(1)可知ABC为等腰直角三角形,从而得出BAC=45°,求出CAM=15°

所而确定C港在A港的什么方向.

1)由题意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°

AB=BC=10,∴AC==≈14.1

答:AC两地之间的距离为14.1km

2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°

C港在A港北偏东15°的方向上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某电器超市销售每台进价分别为200元、170元的AB两种型号的电风扇,下表是近两周的销售情况:

(进价、售价均保持不变,利润 = 销售收入-进货成本)

1)求AB两种型号的电风扇的销售单价;

2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?

3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场购进一批日用品,若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数 (件)与价格 (元/件)之间满足一次函数关系.
(1)试求:y与x之间的函数关系式;
(2)这批日用品购进时进价为4元,则当销售价格定为多少时,才能使每月的润最大?每月的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一块矩形ABCD的空地上划一块四边形MNPQ进行绿化.如图,四边形的顶点在矩形的边上,且AN=AM=CP=CQ=xcm,已知矩形的边BC=200m,边AB=am,a为大于200的常数,设四边形MNPQ的面积为sm2

(1)求S关于x的函数关系式,并直接写出自变量x的取值范围.
(2)若a=400,求S的最大值,并求出此时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ABBC1CDDA1,且∠B90°.求:

1)∠DAC的度数;

2)四边形ABCD的面积(结果保留根号);

3)将△ABC沿AC翻折至△AB′C,如图所示,连接B′D,求△AB′D的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题:①垂线段最短;②同位角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④内错角相等,两直线平行;⑤经过一点有且只有一条直线与已知直线平行;⑥如果=2,那么x=2.其中真命题有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D,E分别是⊙O的内接正三角形ABC的AB,AC边上的中点,若⊙O的半径为2,则DE的长等于( )

A.
B.
C.1
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线 与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线 , 则下列结论:① a﹣b+c>0;②b>0;③阴影部分的面积为4;④若c=﹣1,则 . 其中正确的是(写出所有正确结论的序号)

查看答案和解析>>

同步练习册答案