分析 连接DF、OE,过点D作DG⊥AC与点G,先证明四边形CGDF是矩形,得出DG=CF=y;再证明△AOE∽△ADG,根据相似三角形的性质即可求出答案.
解答 解:连接DF、OE,过点D作DG⊥AC于点G.
∵∠C=∠CGD=∠CFD=90°,
∴四边形CGDF是矩形,
∴DG=CF=y;
∵OE∥DG,
∴△AOE∽△ADG,
∴$\frac{OE}{AO}$=$\frac{DG}{AD}$,
即 $\frac{1}{x+1}$=$\frac{y}{x}$,
化简可得y=$\frac{x}{1+x}$.
点评 此题考查了切线的性质以及确定函数解析式,正确作出辅助线构造相似的三角形是关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com