精英家教网 > 初中数学 > 题目详情

【题目】如图,等腰三角形△ABC的腰长AB=AC=25,BC=40,动点P从B出发沿BC向C运动,速度为10单位/秒.动点Q从C出发沿CA向A运动,速度为5单位/秒,当一个点到达终点的时候两个点同时停止运动,点P′是点P关于直线AC的对称点,连接P′P和P′Q,设运动时间为t秒.

(1)若当t的值为m时,PP′恰好经过点A,求m的值.
(2)设△P′PQ的面积为y,求y与t之间的函数关系式(m<t≤4)
(3)是否存在某一时刻t,使PQ平分角∠P′PC?存在,求相应的t值,不存在,请说明理由.

【答案】
(1)解:如图1中,作AM⊥BC于M.

∵AB=AC=25,AM⊥BC,

∴BM=MC=20,

在Rt△ABM中,AM= = =15,

当PP′恰好经过点A,∵cos∠C= =

=

∴t=

∴m= s


(2)解:如图2中,设PP′交AC于N.

<t≤4时,由△PCN∽△ACM,可得PC=40﹣10t,PN=P′N=24﹣6t,CN=32﹣8t,

∵CQ=5t,

∴NQ=CN﹣CQ=32﹣13t,

∴y= PP′NQ= (48﹣12t)(32﹣13t)=78t2﹣504t+768( <t≤4)


(3)解:存在.理由如下:

如图3中,作QE⊥BC于E.

∵PQ平分∠CPP′,QE⊥PC,QN⊥PP′,

∴QN=QE,

∵sin∠C= =

∴t=2,

∴t=2时,PQ平分角∠P′PC


【解析】(1)由∠C的余弦定义既在Rt△APC,又可在Rt△ACM中列出比例式,二者相等,构建方程,求出m;(2)由△PCN∽△ACM,可表示出PC=40﹣10t,PN=P′N=24﹣6t,CN=32﹣8t,代入面积公式,即可得y= PP′NQ=78t2﹣504t+768;(3)利用∠C的正弦有两种表示的比例式,二者相等,可列出方程,求出t.
【考点精析】本题主要考查了相似三角形的判定与性质和锐角三角函数的定义的相关知识点,需要掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:

根据以上信息,整理分析数据如下:

平均成绩/

中位数/

众数/

方差

7

7

1.2

7

8

4.2

1)写出表格中的值;

2)从方差的角度看,若选派其中一名参赛,你认为应选哪名队员?并说明理.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大于的正整数的三次幂可“裂变”成若干个连续奇数的和,如.若“裂变”后,其中有一个奇数是,则的值是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高学生汉字书写的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试方法是:听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:

组别

成绩x(分)

频数(人数)

频率

50≤x<60

2

0.04

60≤x<70

10

0.2

70≤x<80

14

b

80≤x<90

a

0.32

90≤x<100

8

0.16

请根据表格提供的信息,解答以下问题:

(1)直接写出表中a= , b=
(2)请补全右面相应的频数分布直方图;
(3)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为
(4)请根据得到的统计数据,简要分析这些同学的汉字书写能力,并为提高同学们的书写汉字能力提一条建议(所提建议不超过20字)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知平行四边形ABCD,延长AD到E,使DE=AD,连接BE与DC交于O点.

(1)求证:△BOC≌△EOD;
(2)当△ABE满足什么条件时,四边形BCED是菱形?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在三角形中,由三角形的内角平分线所形成的角存在一定的规律,理解并掌握其中的规律,有助于同学们巩固相关的数学知识.

如图1中,分别平分,且相交于点勤奋小组的同学发现:.证明过程如下:

证明:如图2,连接并延长,

(依据1)

分别平分

(依据2)

依据1 ___,依据2 __

如图3,在图1的基础上,作的角平分线交于点试探究之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”

1)请直接写出两个为“同簇二次函数”的函数:①______,②_________

2)已知关于的二次函数,若为“同簇二次函数”,求函数的表达式,并求出当时,的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.

(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.
求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为了建设国家级卫生城市.市政部门决定搭配AB两种园艺造型共50个摆放在市区,现有3490盆甲种花卉和2950盆乙种花卉可供使用,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90.

1)问符合题意的搭配方案有几种?请你帮助设计出来.

2)若搭配一个A种造型的费用是800元,搭配一个B种造型的费用是960元,试说明(1)中哪种方案费用最低?最低费用是多少元?

查看答案和解析>>

同步练习册答案