精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.

(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.
求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

【答案】
(1)解:设此抛物线的函数解析式为:

y=ax2+bx+c(a≠0),

将A(﹣4,0),B(0,﹣4),C(2,0)三点代入函数解析式得:

解得

所以此函数解析式为:y=


(2)解:∵M点的横坐标为m,且点M在这条抛物线上,

∴M点的坐标为:(m, ),

∴S=SAOM+SOBM﹣SAOB

= ×4×(﹣ m2﹣m+4)+ ×4×(﹣m)﹣ ×4×4

=﹣m2﹣2m+8﹣2m﹣8

=﹣m2﹣4m,

=﹣(m+2)2+4,

∵﹣4<m<0,

当m=﹣2时,S有最大值为:S=﹣4+8=4.

答:m=﹣2时S有最大值S=4


(3)解:设P(x, x2+x﹣4).

当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,

∴Q的横坐标等于P的横坐标,

又∵直线的解析式为y=﹣x,

则Q(x,﹣x).

由PQ=OB,得|﹣x﹣( x2+x﹣4)|=4,

解得x=0,﹣4,﹣2±2

x=0不合题意,舍去.

如图,当BO为对角线时,知A与P应该重合,OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=﹣x得出Q为(4,﹣4).

由此可得Q(﹣4,4)或(﹣2+2 ,2﹣2 )或(﹣2﹣2 ,2+2 )或(4,﹣4).


【解析】(1)利用待定系数法,把ABC三点坐标代入解析式即可求出;(2)最值问题的基本解决策略就是函数思想,设出M的横坐标为m,作为自变量,△AMB的面积为S为函数,由已知得S=SAOM+SOBM﹣SAOB,分别用m的代数式表示各三角形面积,构建出二次函数,运用配方法求出最大值;(3)可分类讨论:OB为边,根据平行四边形的性质知PQ∥OB,且PQ=OB,构建方程|﹣x﹣( 1 2 x2+x﹣4)|=4;当BO为对角线时,A与P应该重合,OP=4.四边形PBQO为平行四边形,则BQ=OP=4,进而求出坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】南山植物园中现有A、B两个园区,已知A园区为长方形,长为(x+y)米,宽为(x﹣y)米;B园区为正方形,边长为(x+3y)米.

(1)请用代数式表示A、B两园区的面积之和并化简;

(2)现根据实际需要对A园区进行整改,长增加(11x﹣y)米,宽减少(x﹣2y)米,整改后A区的长比宽多350米,且整改后两园区的周长之和为980米.

①求x、y的值;

②若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如表:

求整改后A、B两园区旅游的净收益之和.(净收益=收益﹣投入)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形△ABC的腰长AB=AC=25,BC=40,动点P从B出发沿BC向C运动,速度为10单位/秒.动点Q从C出发沿CA向A运动,速度为5单位/秒,当一个点到达终点的时候两个点同时停止运动,点P′是点P关于直线AC的对称点,连接P′P和P′Q,设运动时间为t秒.

(1)若当t的值为m时,PP′恰好经过点A,求m的值.
(2)设△P′PQ的面积为y,求y与t之间的函数关系式(m<t≤4)
(3)是否存在某一时刻t,使PQ平分角∠P′PC?存在,求相应的t值,不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线图像与y轴、x轴分别交于AB两点

1)求点AB坐标和∠BAO度数

2)点CD分别是线段OAAB上一动点(不与端点重合),且CD=DA,设线段OC的长度为x ,,请求出y关于x的函数关系式以及定义域

3)点CD分别是射线OA、射线BA上一动点,且CD=DA,当ΔODB为等腰三角形时,求C的坐标(第(3)小题直接写出分类情况和答案,不用过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组 把解集表示在数轴上,并求出不等式组的整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形中,,点的中点,动点点出发,以每秒的速度沿运动,最终到达点.若点运动的时间为秒,那么当_____________秒时,的面积等于.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学开通了互联网家校合育教育平台,为了解家长使用平台的情况,学校将家长的使用情况分为经常使用、“偶尔使用”和“不使用”三种类型,借助该平台大数据功能,汇总出该校八(1)班和八(2)班全体家长的使用情况,并绘制成如图所示的两幅不完整的统计图:

请根据图中信息解答下列问题

(1)此次调查的家长总人数为   

(2)扇形统计图中代表“不使用”类型的扇形圆心角的度数是   °,并补全条形统计图;

(3)若该校八年级学生家长共有1200人,根据此次调查结果估计该校八年级中“经常使用”类型的家长约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2 . 其中正确的结论是( )

A.①②
B.①③
C.①③④
D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:
①c>0;
②若点B(﹣ ,y1)、C(﹣ ,y2)为函数图象上的两点,则y1<y2
③2a﹣b=0;
<0,
其中,正确结论的个数是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案