【题目】如图,已知△ABC中AB=AC.
(1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,连接CF,求证:∠BAC=∠BFC.
科目:初中数学 来源: 题型:
【题目】如图是某隧道截面示意图,它是由抛物线和长方形构成,已知米,米,抛物线顶点D到地面OA的垂直距离为10米,以OA所在直线为x轴,以OB所在直线为y轴建立直角坐标系.
求抛物线的解析式;
由于隧道较长,需要在抛物线型拱壁上需要安装两排灯,使它们到地面的高度相同,如果灯离地面的高度不超过8米,那么两排灯的水平距离最小是多少米?
一辆特殊货运汽车载着一个长方体集装箱,集装箱宽为4m,最高处与地面距离为6m,隧道内设双向行车道,双向行车道间隔距离为,交通部门规定,车载货物顶部距离隧道壁的竖直距离不少于,才能安全通行,问这辆特殊货车能否安全通过隧道?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.
(1)如图1,若BD=BA,求证:△ABE≌△DBE;
(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AFAC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】给出下列四个命题:
(1)若点A在直线y=2x-3上,且点A到两坐标轴的距离相等,则点A在第一或第四象限;
(2)若A(a,m)、B(a-1,n)(a>0)在反比例函数y=
的图象上,则m<n;
(3)一次函数y=-2x-3的图象不经过第三象限;
(4)二次函数y=-2x2-8x+1的最大值是9.
正确命题的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,然后解决问题:和、差、倍、分等问题中有着广泛的应用,
截长法与补短法在证明线段的和、差、倍、分等问题中有着广泛的应用.具体的做法是在某条线段上截取一条线段等于某特定线段,或将某条线段延长,使之与某特定线段相等,再利用全等三角形的性质等有关知识来解决数学问题.
(1)如图1,在△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,把AB、AC、2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是 ;
(2)问题解决:
如图2,在四边形ABCD中,AB=AD,∠ABC+∠ADC=180°,E、F分别是边BC,边CD上的两点,且∠EAF=∠BAD,求证:BE+DF=EF.
(3)问题拓展:
如图3,在△ABC中,∠ACB=90°,∠CAB=60°,点D是△ABC外角平分线上一点,DE⊥AC交CA延长线于点E,F是AC上一点,且DF=DB.求证:AC-AE=AF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知长方形ABCD的边长AB=16cm,BC=12cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上由点D向C点运动.则当△BPE与△CQP全等时,时间t为( )
A.1sB.3sC.1s或3sD.2s或3s
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形△ABC中,AE=CD,AD、BE交于P点,BQ⊥AD于Q,求证:
(1) BP=2PQ
(2) 连PC,若BP⊥PC,求的值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com