精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,A、B两点分别在x轴和y轴上,OA=1,OB= ,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1 , 连接A1B1 , 再过A1B1中点C2作x轴和y轴的垂线,照此规律依次作下去,则点Cn的坐标为

【答案】
【解析】解:∵过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1
∴B1C1和C1A1是三角形OAB的中位线,
∴B1C1= OA= ,C1A1= OB=
∴C1的坐标为( ),
同理可求出B2C2= = ,C2A2= =
∴C2的坐标为( ),
…以此类推,
可求出BnCn= ,CnAn=
∴点Cn的坐标为
故答案为:
首先利用三角形中位线定理可求出B1C1的长和C1A1的长,即C1的横坐标和纵坐标,以此类推即可求出点Cn的坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.

运用上述知识,解决下列问题:

(1)如果a-2+b+3=0,其中a、b为有理数,那么a= ,b=

(2)如果2+a-1-b=5,其中a、b为有理数,求a+2b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.
(1)求证:AB=AC;
(2)若AB=4,BC=2 ,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某次篮球联赛初赛阶段,每队场比赛,每场比赛都要分出胜负,每队胜一场分, 负一场得分,积分超过分才能获得参赛资格.

(1)已知甲队在初赛阶段的积分为分,甲队初赛阶段胜、负各多少场;

(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC,点D、F分别为线段AC、AB上两点,连接BD、CF交于点E.

(1)BD⊥AC,CF⊥AB,若BE=4,CE=2,求CD:BF;

(2)BD平分∠ABC,CF平分∠ACB,如图2所示,猜想∠BEC∠A的数量关系;并说明理由.

(3)在(2)的条件下,若∠A=60°,试说明:BC=BF+CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.

(1)求证:△AEF≌△BEC;

(2)判断四边形BCFD是何特殊四边形,并说出理由;

(3)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,若BC=1,求AH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中 ,∠A=∠B,D、E是边AB上的点,DG∥AC,EF∥BC,DG、EF相 交于点H.

(1)∠HDE与∠HED是否相等?并说明理由.

解:∠HDE=∠HED.理由如下:

∵DGAC(已知)

                 

EFBC (已知)

            

又∵∠A=∠B (已知)

.

(2)如果∠C=90°,DG、 EF有何位置关系?并仿照 (1)中的解答方法说明理由.

解:        .理由如下:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果m是从﹣1,0,1,2四个数中任取的一个数,n是从﹣2,0,3三个数中任取的一个数,则二次函数y=(x﹣m)2+n的顶点在坐标轴上的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:( 1+(3﹣π)°﹣|1﹣tan60°|+ ÷2.

查看答案和解析>>

同步练习册答案