精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4ac<b2
②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是(  )

A.4个
B.3个
C.2个
D.1个

【答案】B
【解析】解:∵抛物线与x轴有2个交点,
∴b2﹣4ac>0,所以①正确;
∵抛物线的对称轴为直线x=1,
而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),
∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;
∵x=﹣ =1,即b=﹣2a,
而x=﹣1时,y<0,即a﹣b+c<0,
∴a+2a+c<0,所以③错误;
∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),
∴当﹣1<x<3时,y>0,所以④错误;
∵抛物线的对称轴为直线x=1,
∴当x<1时,y随x增大而增大,所以⑤正确.
故选B.
【考点精析】利用二次函数图象以及系数a、b、c的关系对题目进行判断即可得到答案,需要熟知二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC8AB6,则线段CE的长度是(  )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论: ①抛物线过原点;
②4a+b+c=0;
③a﹣b+c<0;
④抛物线的顶点坐标为(2,b);
⑤当x<2时,y随x增大而增大.
其中结论正确的是(

A.①②③
B.③④⑤
C.①②④
D.①④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,矩形的顶点的坐标分别为,且满足

1)矩形的顶点的坐标是( ).

2)若中点,沿折叠矩形使点落在处,折痕为,连并延长交,求直线的解析式.

3)将(2)中直线向左平移个单位交轴于为第二象限内的一个动点,且,求的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣ ,y2)、点C( ,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2 , 且x1<x2 , 则x1<﹣1<5<x2 . 其中正确的结论有(  )
A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E点为DF上的点,BAC 上的点,∠1=∠2,∠C=∠D

求证: DF∥AC

证明:∵ ∠1=∠2(已知),∠1=∠3 ,∠2=∠4( ),

∴ ∠3=∠4( ),

__________( ).

∴ ∠C=∠ABD( ).

∵ ∠C=∠D( ),

∴ ∠D =__________( ).

∴ DF∥AC( ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CD//ABBD平分ABCCE平分DCFACE=90°

(1)请问BDCE是否平行?请你说明理由;

(2)ACBD有何位置关系?请你说明判断的理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图方格纸中每个小方格都是边长为1个单位的正方形若学校位置坐标为A21),图书馆位置坐标为B﹣1﹣2),解答以下问题

1)在图中标出平面直角坐标系的原点并建立直角坐标系

2)若体育馆位置坐标为C1﹣3),请在坐标系中标出体育馆的位置

3)顺次连接学校、图书馆、体育馆得到△ABC△ABC的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.

(1)画出ABC向右平移4个单位后得到的A1B1C1

(2)图中ACA1C1的关系是: _____________.

(3)画出ABCAB边上的高CD;垂足是D

(4)图中ABC的面积是_______________.

查看答案和解析>>

同步练习册答案