精英家教网 > 初中数学 > 题目详情

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣ ,y2)、点C( ,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2 , 且x1<x2 , 则x1<﹣1<5<x2 . 其中正确的结论有(  )
A.2个
B.3个
C.4个
D.5个

【答案】B
【解析】解:(1)正确.∵﹣ =2, ∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,
∴9a﹣3b+c<0,
∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),
解得
∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,
∵a<0,
∴8a+7b=2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B(﹣ ,y2)、点C( ,y3),
﹣2= ,2﹣(﹣ )=

∴点C离对称轴的距离近,
∴y3>y2
∵a<0,﹣3<﹣ <2,
∴y1<y2
∴y1<y2<y3 , 故(4)错误.(5)正确.∵a<0,
∴(x+1)(x﹣5)=﹣3/a>0,
即(x+1)(x﹣5)>0,
故x<﹣1或x>5,故(5)正确.
∴正确的有三个,
故选B.

【考点精析】掌握二次函数图象以及系数a、b、c的关系是解答本题的根本,需要知道二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2009年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图:请根据以上信息解答下列问题

(1)种植油菜每亩的种子成本是多少元?
(2)农民冬种油菜每亩获利多少元?
(3)2009年南县全县农民冬种油菜的总获利多少元?(结果用科学记数法表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在求的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:……①

然后在①式的两边都乘以6,得:……②

②-①得,即,所以.

得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0a≠1),能否求出的值?你的答案是

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,DEACCECA,直线ECDA延长线于F.

(1)CD6,求DE的长;

(2)求证:AEAF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4ac<b2
②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是(  )

A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=(2m-3)x+m+2

1)若函数图像过原点,求m的值;

2)若函数图像过点(-10),求m的值;

3)若函数图像平行于直线y=-x+2m的值;

4)若函数图像经过第一、二、四象限,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(10)、(2, 0)、(21)、(11)、(12)、(22)…根据这个规律,第2019个点的坐标为(  )

A. 456B. 4513C. 4522D. 450

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种小商品的成本价为10元/kg,市场调查发现,该产品每天的销售量w(kg)与销售价x(元/kg)有如下关系w=﹣2x+100,设这种产品每天的销售利润为y(元).
(1)求y与x之间的函数关系式;
(2)当售价定为多少元时,每天的销售利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案