精英家教网 > 初中数学 > 题目详情

【题目】知识迁移 当a>0且x>0时,因为 ,所以x﹣ + ≥0,从而x+ (当x= )是取等号).
记函数y=x+ (a>0,x>0).由上述结论可知:当x= 时,该函数有最小值为2
直接应用
已知函数y1=x(x>0)与函数y2= (x>0),则当x=1时,y1+y2取得最小值为2.
变形应用
已知函数y1=x+1(x>﹣1)与函数y2=(x+1)2+4(x>﹣1),求 的最小值,并指出取得该最小值时相应的x的值.
实际应用
已知某汽车的一次运输成本包含以下三个部分,一是固定费用,共360元;二是燃油费,每千米1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x千米,求当x为多少时,该汽车平均每千米的运输成本最低?最低是多少元?

【答案】解:直接应用: ∵函数y=x+ (a>0,x>0),由上述结论可知:当x= 时,该函数有最小值为2
∴函数y1=x(x>0)与函数y2= (x>0),则当x=1时,y1+y2取得最小值为2.
变形应用
已知函数y1=x+1(x>﹣1)与函数y2=(x+1)2+4(x>﹣1),
= =(x+1)+ 的最小值为:2 =4,
∵当(x+1)+ =4时,
整理得出:x2﹣2x+1=0,
解得:x1=x2=1,
检验:x=1时,x+1=2≠0,
故x=1是原方程的解,
的最小值为4,相应的x的值为1;
实际应用
设行驶x千米的费用为y,则由题意得,y=360+1.6x+0.001x2
故平均每千米的运输成本为: =0.001x+ +1.6=0.001x+ +1.6,
由题意可得:当0.001x= 时, 取得最小,此时x=600km,
此时 ≥2 +1.6=2.8,
即当一次运输的路程为600千米时,平均每千米的运输成本最低,最低费用为:2.8元.
答:汽车一次运输的路程为600千米,平均每千米的运输成本最低,最低是2.8元.
【解析】直接运用:可以直接套用题意所给的结论,即可得出结果. 变形运用:先得出 的表达式,然后将(x+1)看做一个整体,继而再运用所给结论即可.
实际运用:设行驶x千米的费用为y,则可表示出平均每千米的运输成本,利用所给的结论即可得出答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】不等式组 的解集表示在数轴上,正确的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.
(1)将条形统计图补充完整;
(2)本次抽样调查的样本容量是
(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的切线,垂足为D.
(1)求证:AC平分∠BAD;
(2)若AC=2 ,CD=2,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】第三十届夏季奥林匹克运动会将于2012年7月27日至8月12日在英国伦敦举行,目前正在进行火炬传递活动.某校学生会为了确定近期宣传专刊的主题,想知道学生对伦敦奥运会火炬传递路线的了解程度,决定随机抽取部分学生进行一次问卷调查,并根据收集到的信息进行了统计,绘制了如图两幅上不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有名;
(2)请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应扇形的圆心角的大小;
(3)若该校共有1200名学生,请根据上述调查结果估计该校学生中对伦敦奥运火炬传递路线达到了“了解”和“基本了解”程度的总人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ= ,那么当点P运动一周时,点Q运动的总路程为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明的爸爸和妈妈分别驾车从家同时出发去上班,爸爸行驶到甲处时,看到前面路口时红灯,他立即刹车减速并在乙处停车等待,爸爸驾车从家到乙处的过程中,速度v(m/s)与时间t(s)的关系如图1中的实线所示,行驶路程s(m)与时间t(s)的关系如图2所示,在加速过程中,s与t满足表达式s=at2

(1)根据图中的信息,写出小明家到乙处的路程,并求a的值;
(2)求图2中A点的纵坐标h,并说明它的实际意义;
(3)爸爸在乙处等代理7秒后绿灯亮起继续前行,为了节约能源,减少刹车,妈妈驾车从家出发的行驶过程中,速度v(m/s)与时间t(s)的关系如图1中的折线O﹣B﹣C所示,行驶路程s(m)与时间t(s)的关系也满足s=at2 , 当她行驶到甲处时,前方的绿灯刚好亮起,求此时妈妈驾车的行驶速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】禁渔期间,我渔政船在A处发现正北方向B处有一艘可以船只,测得A、B两处距离为200海里,可疑船只正沿南偏东45°方向航行,我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβ;sin(α﹣β)=sinαcosβ﹣cosαsinβ.例如sin90°=sin(60°+30°)=sin60°cos30°+cos60°sin30°= × + × =1.类似地,可以求得sin15°的值是

查看答案和解析>>

同步练习册答案