精英家教网 > 初中数学 > 题目详情

【题目】如图,ACBD相交于点OAC平分∠DCBCDAD,∠ACD45°,∠BAC60°.

(1)证明:ADBC

(2)求∠EAD的度数;

(3)求证:∠AOB=∠DAC +∠CBD

【答案】(1)见解析;(2)75°;(3)见解析.

【解析】(1)由AC平分DCB,∠ACD=45°,可得∠BCD=90°,从而可证ADBC

(2)由ADBC可求∠ACB=∠ACD45°,然后由三角形内角和可求出∠ABC的度数,再根据两直线平行,同位角相等可求出∠EAD的度数;;

(3)过点OOFAD,则OFBC,根据平行线的性质可得∠AOF=∠DAC,∠FOB=∠CBD,然后等量代换可得结论.

⑴ 证明:∵AC平分∠DCB

BCD=2ACD=2×45°=90°.

CDAD

∴∠ADC=90°,

∴∠BCD+ADC=90°+90°=180°,

ADBC

⑵ ∵AC平分∠DCB

ACBACD=45°,

ADBC

DAC=ACB=45°,

∴∠EAD=180°-DACBAC

=180°-45°-60°

=75°;

过点OOFAD

ADBC

OFBC

AOFDAC,∠FOB=∠CBD

AOBAOF+FOB=∠DAC+CBD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交ADACBCMON,连接ANCM,则四边形ANCM是菱形.

乙:分别作∠A∠B的平分线AEBF,分别交BCADEF,连接EF,则四边形ABEF是菱形.根据两人的作法可判断( )

A. 甲正确,乙错误 B. 乙正确,甲错误

C. 甲、乙均正确 D. 甲、乙均错误

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是 (  )

A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1)

C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABO的顶点A是双曲线y1= 与直线y2=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且SABO=

(1)求这两个函数的解析式;
(2)求△AOC的面积;
(3)直接写出使y1>y2成立的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为提高饮水质量越来越多的居民开始选购家用净水器.一商家抓住商机从厂家购进了AB两种型号家用净水器共160A型号家用净水器进价是150/B型号家用净水器进价是350/购进两种型号的家用净水器共用去36000

1)求AB两种型号家用净水器各购进了多少台

2)为使每台B型号家用净水器的毛利润是A型号的2且保证售完这160台家用净水器的毛利润不低于11000求每台A型号家用净水器的售价至少是多少元?(注毛利润=售价﹣进价)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,下列结论正确的有(
①AD=BD=BC;②△BCD≌△ABC;③AD2=ACDC;④点D是AC的黄金分割点.

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图所示,AB//CD,点EAD的延长线上,∠EDC与∠B互为补角.

(1)问ADBC是否平行?请说明理由;

(2)如果∠EDC=72°,∠1=∠2=2∠CAB,求∠CAF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】人民公园划出一块矩形区域,用以栽植鲜花.
(1)经测量,该矩形区域的周长是72m,面积为320m2 , 请求出该区域的长与宽;
(2)公园管理处曾设想使矩形的周长和面积分别为(1)中区域的周长和面积的一半,你认为此设想合理吗?如果此设想合理,请求出其长和宽;如果不合理,请说明理由,并求出在(1)中周长减半的条件下矩形面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是(  )

A. 3km/h4km/h B. 3km/h3km/h

C. 4km/h4km/h D. 4km/h3km/h

查看答案和解析>>

同步练习册答案