精英家教网 > 初中数学 > 题目详情

【题目】如图,Rt△ABO的顶点A是双曲线y1= 与直线y2=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且SABO=

(1)求这两个函数的解析式;
(2)求△AOC的面积;
(3)直接写出使y1>y2成立的x的取值范围.

【答案】
(1)解:设A点坐标为(x,y),且x<0,y>0,

则SABO= |BO||BA|= (﹣x)y=

∴xy=﹣3,

又∵y=

即xy=k,

∴k=﹣3.

∴所求的两个函数的解析式分别为y=﹣ ,y=﹣x+2


(2)解:由y=﹣x+2,

令x=0,得y=2.

∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),

∵A、C在反比例函数的图象上,

,解得

∴交点A为(﹣1,3),C为(3,﹣1),

∴SAOC=SODA+SODC= OD(|x1|+|x2|)= ×2×(3+1)=4


(3)解:使y1>y2成立的x的取值范围是:﹣1<x<0或x>3
【解析】(1)欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为3且为负数,由此即可求出k;(2)由函数的解析式组成方程组,解之求得A、C的坐标,然后根据SAOC=SODA+SODC即可求出;(3)根据图象即可求得.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,CD⊥AB于D,求:

(1)斜边AB的长;

(2)△ABC的面积;

(3)高CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点E是对角线AC上一点,且CECD,过点EEFACAD于点F,连接BE.

(1)求证:DFAE

(2)当AB=2时,求BE2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:

(1)的整数部分是   ,小数部分是   

(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值;

(3)已知:10+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.

(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为提倡节约用水,准备实行自来水阶梯计费方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地做决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括最大值但不包括最小值),请你根据统计图解决下列问题:

(1)此次抽样调查的样本容量是   

(2)补全左侧统计图,并求扇形统计图中“25吨~30部分的圆心角度数.

(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ACBD相交于点OAC平分∠DCBCDAD,∠ACD45°,∠BAC60°.

(1)证明:ADBC

(2)求∠EAD的度数;

(3)求证:∠AOB=∠DAC +∠CBD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的面积法给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用面积法来证明,下面是小聪利用图1证明勾股定理的过程:

将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2.

证明:连结DB,过点DBC边上的高DF,则DF=EC=b﹣a,

∵S四边形ADCB=SACD+SABC= 12 b2+ 12 ab.

∵S四边形ADCB=SADB+SDCB= 12 c2+ 12 a(b﹣a)

∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)

∴a2+b2=c2

请参照上述证法,利用图2完成下面的证明.

将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点.

(1)在点P运动过程中,试写出OPA的面积s与x的函数关系式;

(2)当P运动到什么位置,OPA的面积为,求出此时点P的坐标;

(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.

查看答案和解析>>

同步练习册答案