精英家教网 > 初中数学 > 题目详情

【题目】如图,是线段的垂直平分线交点,,则的大小是(

A. B. C. D.

【答案】C

【解析】

M作射线DN,根据线段垂直平分线的性质得出AM=DM,CM=DM,推出∠DAM=∠ADM,∠DCM=∠CDM,求出∠MAD+∠MCD=∠ADM+∠CDM=∠ADC=65°,根据三角形外角性质求出∠AMC,根据四边形的内角和定理求出即可.

M作射线DN,如图所示:


∵M是线段AD、CD的垂直平分线交点,
∴AM=DM,CM=DM,
∴∠DAM=∠ADM,∠DCM=∠CDM,
∴∠MAD+∠MCD=∠ADM+∠CDM=∠ADC,
∵∠ADC=65°,
∴∠MAD+∠MCD=∠ADC=65°,
∴∠AMC=∠AMN+∠CMN=∠DAM+∠ADM+∠DCM+∠CDM=65°+∠ADC=65°+65°=130°
∵AB⊥BC,
∴∠B=90°,
∴∠MAB+∠MCB=360°-∠B-∠AMC=360°-90°-130°=140°,
故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,CD=2,求EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=﹣x2+bx+c的图象经过A(2,0),B(0,﹣6)两点

(1)求这个二次函数的解析式;

(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(感知)如图,点M是正方形ABCD的边BC上一点,点NCD延长线上一点,且MAAN易证ABM≌△ADN进而证得AMB=∠AND.

(应用)如图(1),在正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=45°.求证:BEA=∠AEF.

(拓展)如图(2),在四边形ABCD中,AB=AD,∠BAD=90°,∠B+∠D=180°,点EF分别在边BCCD上,∠EAF=45°.∠BEA=50°,则∠AFD的大小为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A=B=90°,E是AB上的一点,且AE=BC,1=2

(1)RtADE与RtBEC全等吗?并说明理由;

(2)CDE是不是直角三角形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在正五边形中,对角线交于点,求证:

四边形是菱形;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是半圆的直径,是半圆的四等分点,,连接相交于点,连接,下列结论:;②;③,其中正确的结论是(

A. ①②③ B. 只有①② C. 只有①③ D. 只有

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有12344个数,另一个纸箱内4个小球上分别写有56784个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.

(1)请你通过列表(或树状图)分别计算乘积是2的倍数和3的倍数的概率;

(2)你认为这个游戏公平吗?为什么?若你认为不公平,请你修改得分规则,使游戏对双方公平.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.

(1)求每台电冰箱与空调的进价分别是多少?

(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33x40),那么该商店要获得最大利润应如何进货?

查看答案和解析>>

同步练习册答案