精英家教网 > 初中数学 > 题目详情

【题目】如图,是半圆的直径,是半圆的四等分点,,连接相交于点,连接,下列结论:;②;③,其中正确的结论是(

A. ①②③ B. 只有①② C. 只有①③ D. 只有

【答案】C

【解析】

连结OC、BC、OD,ODCEG,如图,由于C、D、E是半圆的四等分点,根据垂径定理得到OD⊥CE,CE=2CG,根据圆心角、弧、弦的关系得到∠AOC=∠COD=45°,根据圆周角定理得∠BCE=∠ABC,再证明四边形CHOG为正方形,则CH=CG,所以CE=2CH;利用等角的余角相等得∠ACH=∠ABC,而∠CEH所对的弧大于AC弧,则∠CEH>∠ABC,所以∠ACH<∠CEH;利用CE∥AB得到∠CFD=∠ABD,而∠ABD=2∠ABC=2∠ACH,于是有∠CFD=2∠ACH.

连结OC、BC、OD,ODCEG,如图:


∵C、D、E是半圆的四等分点,
∴OD⊥CE,∠AOC=∠COD=45°,∠BCE=∠ABC,
∴CE=2CG,CE∥AB
∵CH⊥AB,
∴四边形CHOG为正方形,
∴CH=CG,
∴CE=2CH,所以①正确;
∵AB为直径,
∴∠ACB=90°,
∴∠ACH=∠ABC,
而∠CEH所对的弧大于AC弧,
∴∠CEH>∠ABC,
∴∠ACH<∠CEH,所以②错误;
∵CE∥AB,
∴∠CFD=∠ABD,
AC=CD,
∴∠ACB=∠CBD,
∴∠ABD=2∠ABC=2∠ACH,
∴∠CFD=2∠ACH,所以③正确.
故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C均在坐标轴上,AO=BO=CO=1,过A,O,C作⊙DE是⊙D上任意一点,连结CE, BE,则的最大值是(

A. 4 B. 5 C. 6 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数的图象过点(0,3),且与两坐标轴在第一象限所围成的三角形面积为3,则这个一次函数的表达式为(

A.y=1.5x+3B.y=1.5x-3C.y=-1.5x+3D.y=-1.5x-3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是线段的垂直平分线交点,,则的大小是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,以为直径的于点,交于点.求证:

是等腰三角形;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分线交于O点,过点OBC的平行线交ABM点,交ACN点,则△AMN的周长为( )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图E在△ABC的边AC上,且∠AEB=∠ABC.

⑴求证:∠ABE=∠C;

⑵若∠BAE的平分线AFBEF,FD∥BCACD,AB=5,AC=8,求DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(0,2),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为(  )

A. (2,4) B. (2,3) C. (3,4) D. (3,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:

20

21

19

16

27

18

31

29

21

22

25

20

19

22

35

33

19

17

18

29

18

35

22

15

18

18

31

31

19

22

整理上面数据,得到条形统计图:

样本数据的平均数、众数、中位数如下表所示:

统计量

平均数

众数

中位数

数值

23

m

21

根据以上信息,解答下列问题:

(1)上表中众数m的值为   

(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据   来确定奖励标准比较合适.(填平均数”、“众数中位数”)

(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.

查看答案和解析>>

同步练习册答案