【题目】如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(0,2),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为( )
A. (2,4) B. (2,3) C. (3,4) D. (3,3)
【答案】A
【解析】
如图,过A作AD⊥x轴,过A'作A'C⊥x轴,根据等边三角形的性质以及点B的坐标则可求得点A坐标,由点A′坐标可得OC=3,利用三角函数可求得A′C的长,继而可求得A'(3,3),CD=2,A'C﹣AD=2,由此可得出点A的平移规律,结合点B的坐标即可求得答案.
如图,过A作AD⊥x轴,过A'作A'C⊥x轴,
∵△AOB是等边三角形,点B的坐标为(0,2),
∴AO=BO=2,∠AOB=60°,
∴∠AOD=30°,
∴AD=AO=1,OD=,
即A(,1),
又∵OC=3,
∴A'C=tan30°×OC=3,
∴A'(3,3),
∴CD=2,A'C﹣AD=3﹣1=2,
∴点A向右平移2个单位,向上平移2个单位可得点A',
又∵B的坐标为(0,2),
∴点B′的坐标为(2,4),
故选:A.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=﹣x2+bx+c的图象经过A(2,0),B(0,﹣6)两点,
(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是半圆的直径,、、是半圆的四等分点,于,连接、相交于点,连接、,下列结论:①;②;③,其中正确的结论是( )
A. ①②③ B. 只有①② C. 只有①③ D. 只有③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。
(1)请你通过列表(或树状图)分别计算乘积是2的倍数和3的倍数的概率;
(2)你认为这个游戏公平吗?为什么?若你认为不公平,请你修改得分规则,使游戏对双方公平.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、B分别在x轴的负半轴和y轴的正半轴上,点C(2,﹣2),CA、CB分别交坐标轴于D、E,CA⊥AB,且CA=AB
(1)求点B的坐标;
(2)如图2,连接DE,求证:BD﹣AE=DE;
(3)如图3,若点F为(4,0),点P在第一象限内,连接PF,过P作PM⊥PF交y轴于点M,在PM上截取PN=PF,连接PO、BN,过P作∠OPG=45°交BN于点G,求证:点G是BN的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】尺规作图:经过已知直线外一点作这条直线的垂线.
已知:直线MN和直线外一点P.
求作:MN的垂线,使它经过点P.
(1)分步骤写出作图过程;
(2)说出所作直线就是求作垂线的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=3.
(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;
(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)
【答案】(1)反比例函数的解析式为y=;(2)S阴影=6π-.
【解析】分析:(1)根据tan30°=,求出AB,进而求出OA,得出A的坐标,设过A的双曲线的解析式是y=,把A的坐标代入求出即可;(2)求出∠AOA′,根据扇形的面积公式求出扇形AOA′的面积,求出OD、DC长,求出△ODC的面积,相减即可求出答案.
本题解析:
(1)在Rt△OBA中,∠AOB=30°,OB=3,
∴AB=OB·tan 30°=3.
∴点A的坐标为(3,3).
设反比例函数的解析式为y= (k≠0),
∴3=,∴k=9,则这个反比例函数的解析式为y=.
(2)在Rt△OBA中,∠AOB=30°,AB=3,
sin ∠AOB=,即sin 30°=,
∴OA=6.
由题意得:∠AOC=60°,S扇形AOA′==6π.
在Rt△OCD中,∠DOC=45°,OC=OB=3,
∴OD=OC·cos 45°=3×=.
∴S△ODC=OD2==.
∴S阴影=S扇形AOA′-S△ODC=6π-.
点睛:本题考查了勾股定理、待定系数法求函数解析式、特殊角的三角函数值、扇形的面积及等腰三角形的性质,本题属于中档题,难度不大,将不规则的图形的面积表示成多个规则图形的面积之和是解答本题的关键.
【题型】解答题
【结束】
26
【题目】矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.
(1)如图①,已知折痕与边BC交于点O,连接AP,OP,OA.
① 求证:△OCP∽△PDA;
② 若△OCP与△PDA的面积比为1:4,求边AB的长.
(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为,C点的坐标为,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着的路线移动即:沿着长方形移动一周.
写出点B的坐标______
当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.
在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com