精英家教网 > 初中数学 > 题目详情

【题目】(1)问题

如图1,在四边形ABCD中,点PAB上一点,∠DPC=∠A=∠B=90°,求证:ADBC=APBP.

(2)探究

如图2,在四边形ABCD中,点PAB上一点,∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.

(3)应用

请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6AD=BD=5,点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A,设点P的运动时间为t(),当以D为圆心,以DC为半径的圆与AB相切时,求t的值.

【答案】(1)证明见解析;(2)结论ADBC=APBP仍成立;理由见解析;(3)t的值为2秒或10秒.

【解析】

1)根据同角的余角相等,即可证出∠APD=∠BPC,然后根据相似三角形的判定即可证出:△ADP∽△BPC,再根据相似三角形的性质,列出比例式,最后根据比例的基本性质即可证出结论;

2)根据三角形外角的性质和已知条件证出:∠BPC=APD,然后根据相似三角形的判定即可证出:△ADP∽△BPC,再根据相似三角形的性质,列出比例式,最后根据比例的基本性质即可证出结论;

3)过点DDEAB于点E,根据三线合一和勾股定理求出DE,然后画圆根据切线的性质可得:DC=DE=8,再根据(1)(2)的经验得ADBC=APBP,列出方程,求出t的值即可.

(1)证明:∵∠DPC=A=B=90°,

∴∠ADP+APD=90°,∠BPC+APD=90°,

∴∠APD=BPC

∴△ADP∽△BPC

ADBC=APBP

(2)结论ADBC=APBP仍成立;理由:

证明:∵∠BPD=DPC+BPC,∠BPD=A+APD

∴∠DPC+BPC=A+APD

∵∠DPC=A=θ,

∴∠BPC=APD

又∵∠A=B=θ,

∴△ADP∽△BPC

ADBC=APBP

(3)解:如下图,过点DDEAB于点E

AD=BD=10AB=12

AE=BE=6

根据勾股定理可得:DE==8

∵以D为圆心,以DC为半径的圆与AB相切,

DC=DE=8

BC=10-8=2

AD=BD

∴∠A=B

又∵∠DPC=A

∴∠DPC=A=B,由(1)(2)的经验得ADBC=APBP

又∵AP=tBP=12-t

t(12-t)=10×2

t=2t=10

t的值为2秒或10秒.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线Myax2+bx+ca≠0)经过A(﹣1,0),且顶点坐标为B(0,1).

(1)求抛物线M的函数表达式;

(2)设Ft,0)为x轴正半轴上一点,将抛物线M绕点F旋转180°得到抛物线M1

抛物线M1的顶点B1的坐标为   

当抛物线M1与线段AB有公共点时,结合函数的图象,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017湖北省十堰市,第24题,10分)已知O为直线MN上一点,OPMN,在等腰RtABO中,∠BAO=90°,ACOPOMCDOB的中点,DEDCMNE

1)如图1,若点BOP上,则:

AC OE(填“<”,“=”或“>”);

②线段CACOCD满足的等量关系式是

2)将图1中的等腰RtABOO点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;

3)将图1中的等腰RtABOO点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CACOCD满足的等量关系式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与x轴交于A(3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.

(1)请直接写出D点的坐标.

(2)求二次函数的解析式.

(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在某班讲故事比赛中有一个抽奖活动,活动规则是:只有进入最后决赛的甲、乙、丙三位同学,每人才能获得一次抽奖机会在如图所示的翻奖牌正面的4个数字中选一个数字,选中后就可以得到该数字后面的相应奖品:前面的人选中的数字,后面的人就不能再选择数字了

(1)请用树状图(或列表)的方法求甲、乙二人得到的奖品都是计算器的概率

(2)有的同学认为,如果甲先翻奖牌,那么他得到篮球的概率会大些,这种说法正确吗?请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AEDC的交点为O,连接DE

(1)求证:ADE≌△CED

(2)求证:DEAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面内容,并按要求解决问题: 问题:在平面内,已知分别有个点,个点,个点,5 个点,n 个点,其中任意三 个点都不在同一条直线上.经过每两点画一条直线,它们可以分别画多少条直线?探究:为了解决这个问题,希望小组的同学们设计了如下表格进行探究:(为了方便研 究问题,图中每条线段表示过线段两端点的一条直线)

请解答下列问题:

1)请帮助希望小组归纳,并直接写出结论:当平面内有个点时,直线条数为

2)若某同学按照本题中的方法,共画了条直线,求该平面内有多少个已知点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形OABC的一边OAx轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若COD的面积为20,则k的值等于_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)、B(4,0)两点,与y轴交于点C,且OC=3OA.点P是抛物线上的一个动点,过点P作PE⊥x轴于点E,交直线BC于点D,连接PC.

(1)求抛物线的解析式;

(2)如图2,当动点P只在第一象限的抛物线上运动时,求过点P作PF⊥BC于点F,试问△PDF的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由.

(3)当点P在抛物线上运动时,将△CPD沿直线CP翻折,点D的对应点为点Q,试问,四边形CDPQ是否成为菱形?如果能,请求出此时点P的坐标,如果不能,请说明理由.

查看答案和解析>>

同步练习册答案