【题目】如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)请直接写出D点的坐标.
(2)求二次函数的解析式.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.
【答案】(1)D(﹣2,3);
(2)二次函数的解析式为y=﹣x2﹣2x+3;
(3)一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.
【解析】
试题(1)由抛物线的对称性来求点D的坐标;
(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),把点A、B、C的坐标分别代入函数解析式,列出关于系数a、b、c的方程组,通过解方程组求得它们的值即可;
(3)由图象直接写出答案.
试题解析:(1)∵如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,
∴对称轴是x==﹣1.
又点C(0,3),点C、D是二次函数图象上的一对对称点,
∴D(﹣2,3);
(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),
根据题意得 ,
解得 ,
所以二次函数的解析式为y=﹣x2﹣2x+3;
(3)如图,一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.
科目:初中数学 来源: 题型:
【题目】问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.
问题探究:在“问题情境”的基础上,
(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;
(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P落在点P'处.若正方形ABCD的边长为4 ,AD的中点为S,求P'S的最小值.
问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG=,请直接写出FH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知双曲线y=(x<0)和 y=(x>0),直线OA与双曲线y=交于点A,将直线OA向下平移与双曲线y=交于点B,与y轴交于点P,与双曲线y=交于点C,S△ABC=6,,则k=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件设每件童装降价x元时,平均每天可盈利y元.
写出y与x的函数关系式;
当该专卖店每件童装降价多少元时,平均每天盈利400元?
该专卖店要想平均每天盈利600元,可能吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,平行四边形ACDE的一边在直径AB上,点E在⊙O上.
(1)如图1,当点D在⊙O上时,请你仅用无刻度的直尺在AB上取点P,使DP⊥AB于P;
(2)如图2,当点D在⊙O内时,请你仅用无刻度的直尺在AB上取点Q,使EQ⊥AB于Q.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证ΔADE∽ΔABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年第六届世界互联网大会在桐乡乌镇召开,现从全校学生中选出名同学参加会议相关服务工作,其中名男生,名女生.
(1)若从这名同学中随机选取人作为联络员,求选到男生的概率.
(2)若会议的某项服务工作只在,两位同学中选一人,准备用游戏的方式决定谁参加.游戏规则是:四个乒乓球上的数字分别为,,,(乒乓球只有数字不同,其余完全相同),将乒乓球放在不透明的纸箱中,从中任意摸取两个,若取到的两个乒乓球上的数字之和大于则选,否则选,从是否公平的角度看,该游戏规则是否合理,用树状图或表格说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的对称轴为直线,与轴的一个交点在和之间,其部分图象如图所示.则下列结论:①;②;③;④(为实数);⑤点,,是该抛物线上的点,则,正确的个数有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com