精英家教网 > 初中数学 > 题目详情

【题目】如图,在锐角三角形ABC中,点DE分别在边ACAB上,AGBC于点GAFDE于点FEAF=∠GAC.

1)求证ΔADEΔABC

2)若AD=3AB=5,求的值.

【答案】1)见解析;(2).

【解析】

1)由于AGBCAFDE,所以∠AFE=AGC=90°,从而可证明∠AED=ACB,进而可证明ADE∽△ABC
2ADE∽△ABC,又易证EAF∽△CAG,所以,即可求解.

解:(1)证明:在ΔABC中,

AGBC于点GAFDE于点F

∴∠AFE=AGC=90°

∵∠EAF=GAC

∴∠AED=C

ΔADEΔABC中,

∵∠AED=C,∠EAD=CAB

ΔADEΔABC.

2)解:在ΔAEFΔACG中,

∵∠AFE=AGC,∠EAF=GAC

ΔAEFΔAGC

由(1)知ΔADEΔABC

ΔAEFΔAGC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】 若一个四边形的两条对角线互相垂直且相等,则称这个四边形为奇妙四边形.如图1,四边形ABCD中,若AC=BDACBD,则称四边形ABCD为奇妙四边形.根据奇妙四边形对角线互相垂直的特征可得奇妙四边形的一个重要性质:奇妙四边形的面积等于两条对角线乘积的一半.根据以上信息回答:

1)矩形 奇妙四边形(填“是”或“不是”);

2)如图2,已知⊙O的内接四边形ABCD是奇妙四边形,若⊙O的半径为6,∠ BCD=60°.求奇妙四边形ABCD的面积;

3)如图3,已知⊙O的内接四边形ABCD是奇妙四边形作OMBCM.请猜测OMAD的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(3,0),C(1,﹣1),ACx轴于点P.

(1)ACB的度数为_____

(2)P点坐标为______

(3)以点O为位似中心,将△ABC放大为原来的2倍,请在图中画出所有符合条件的三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与x轴交于A(3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.

(1)请直接写出D点的坐标.

(2)求二次函数的解析式.

(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆的直径,点C是弧AB的中点,点E是弧AC的中点,连结EBCA交于点F,则 的值为(

A.B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(8分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1)。

(1)以O点为位似中心在y轴的左侧将OBC放大到两倍画出图形。

(2)写出B、C两点的对应点B、C的坐标;

(3)如果OBC内部一点M的坐标为(x,y),写出M的对应点M的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰RtABCACB=90°)的直角边与正方形DEFG的边长均为2,且ACDE在同一直线上,开始时点C与点D重合,让ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为xABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则yx之间的函数关系的图象大致是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a10m),围成中间隔有一道篱笆的长方形花圃.设花圃的宽ABxm,面积为Sm2

1)求Sx的函数关系式;

2)如果要围成面积为45m2的花圃,AB的长是多少米?

3)能围成面积比45 m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】温州市政府计划投资百亿元开发瓯江口新区,打造出一个东方时尚岛、海上新温州.为了解温州市民对瓯江口新区的关注情况,某学校数学兴趣小组随机采访部分温州市民,对采访情况制作了统计图表的一部分如下:

关注情况

频数

频率

A.高度关注

m

0.1

B.一般关注

100

0.5

C.不关注

30

n

D.不知道

50

0.25

1)根据上述统计表可得此次采访的人数为   人;m   n   

2)根据以上信息补全条形统计图;

3)根据上述采访结果,估计25000名温州市民中高度关注瓯江口新区的市民约   人.

查看答案和解析>>

同步练习册答案