分析 (1)由四边形ABCD是矩形,根据矩形与折叠的性质,即可证得△AEO≌△CFO,继而证得AE=CE=CF=AF,继而可证得:四边形AFCE是菱形;
(2)连接AC交EF于点O,由勾股定理先求出AC的长度,根据折叠的性质可判断出RT△EOC∽RT△ABC,从而利用相似三角形的对应边成比例可求出OE,再由EF=2OE可得出EF的长度.
解答 解:四边形AFCE是菱形,
理由:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠EAO=∠FCO,
由折叠的性质可得:OA=OC,AE=CE,AF=CF,
在△OAE和△OCF中,
$\left\{\begin{array}{l}{∠EAO=∠FCO}\\{∠AOE=∠COF}\\{OA=OC}\end{array}\right.$,
∴△AEO≌△CFO(AAS),
∴AE=CF,
∴AE=CE=CF=AF,
∴四边形AFCE是菱形;
(2)解:连接AC交EF于点O,
由勾股定理知AC=4$\sqrt{5}$,
又∵折叠矩形使C与A重合时有EF⊥AC,
则RT△EOC∽RT△ABC,
∴$\frac{OE}{OC}$=$\frac{AB}{BC}$=$\frac{1}{2}$,
∴OE=$\frac{1}{2}$OC=$\frac{1}{2}$×2$\sqrt{5}$,
故EF=2OE=2$\sqrt{5}$.
点评 此题考查了翻折变换、勾股定理,菱形的判定,矩形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
科目:初中数学 来源: 题型:选择题
A. | $\frac{3}{2}$ | B. | $\frac{8}{3}$ | C. | 5 | D. | 6 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com