精英家教网 > 初中数学 > 题目详情

【题目】如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F.若∠BAC=35°,则∠BFC的大小是(  )

A. 105° B. 110° C. 100° D. 120°

【答案】B

【解析】

由全等三角形的对应角相等、三角形外角定理以及三角形内角和定理进行解答

设∠C′=α,B′=β

ADC≌△ADC′, AEB≌△AEB′

∴∠ACD=C′=α, ABE=B′=β,BAE=B′AE=35°

∴∠C′DB=BAC+ACD=35°+α, CEB′=35°+β

C′DEB′BC

∴∠ABC=C′DB=35°+α , ACB=CEB′=35°+β

∴∠BAC+ABC+ACB=180°

105°+α+β=180°

α+β=75°

∵∠BFC=BDC+DBE

∴∠BFC=35°+α+β=35°+75°=110°

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】AD ABC BC 边上的中线 AB 3 , AD 4 , AC 的取值范围是( )

A. 1 AC 7 B. 0.5 AC 3.5 C. 5 AC 11 D. 2.5 AC 5.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题6分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(2,2),B(4,1),C(4,4).

(1)作出 ABC关于原点O成中心对称的 A1B1C1.
(2)作出点A关于x轴的对称点A'.若把点A'向右平移a个单位长度后落在 A1B1C1的内部(不包括顶点和边界),求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,△ABC在平面直角坐标系中的位置如图所示.

(1)把△ABC向下平移2个单位长度得到△A1B1C1,请画出△A1B1C1

(2)请画出△A1B1C1关于y轴对称的△A2B2C2,并写出A2的坐标;

(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为( )

A.( ,﹣1)
B.(1,﹣
C.( ,﹣
D.(﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简.

(1)( x- y)( x+ y) ( x2+ y2) ( x4+ y4)·…·(x16+ y16)

(2)(22+1)(24+1)(28+1)(216+1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把下列各数填入相应的括号内:

-11,,3, ,0,,-12.101001…,-π,0.4.

有理数{ …};

无理数{ ……};

正实数{ …};

负实数{ ……}.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】乘法公式的探究及应用.

(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);

(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);

(3)比较图1、图2阴影部分的面积,可以得到公式

(4)运用你所得到的公式,计算下列各题:

①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,在平面直角坐标系中,

(1) 作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:

A1 ,B1 ,C1 .

(2) 直接写出△ABC的面积为 .

(3) x轴上画点P,使△PAC的周长最小. (不写作法,保留作图痕迹)

查看答案和解析>>

同步练习册答案