【题目】如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.
(1)求证:AB是⊙O的切线;
(2)若CD的弦心距为1,BE=EO,求BD的长.
【答案】(1)证明见解析;(2)BD=2.
【解析】试题分析:(1)连接OD,如图1所示,由OD=OC,根据等边对等角得到一对角相等,再由∠DOB为△COD的外角,利用三角形的外角等于与它不相邻的两个内角之和,等量代换可得出∠DOB=2∠DCB,又∠A=2∠DCB,可得出∠A=∠DOB,又∠ACB=90°,可得出直角三角形ABC中两锐角互余,等量代换可得出∠B与∠ODB互余,即OD垂直于BD,确定出AB为圆O的切线,得证;
(2)法1:过O作OM垂直于CD,根据垂径定理得到M为DC的中点,由BD垂直于OD,得到三角形BDO为直角三角形,再由BE=OE=OD,得到OD等于OB的一半,可得出∠B=30°,进而确定出∠DOB=60°,又OD=OC,利用等边对等角得到一对角相等,再由∠DOB为三角形DOC的外角,利用外角的性质及等量代换可得出∠DCB=30°,在三角形CMO中,根据30°角所对的直角边等于斜边的一半得到OC=2OM,由弦心距OM的长求出OC的长,进而确定出OD及OB的长,利用勾股定理即可求出BD的长;
法2:过O作OM垂直于CD,连接ED,由垂径定理得到M为CD的中点,又O为EC的中点,得到OM为三角形EDC的中位线,利用三角形中位线定理得到OM等于ED的一半,由弦心距OM的长求出ED的长,再由BE=OE,得到ED为直角三角形DBO斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,由DE的长求出OB的长,再由OD及OB的长,利用勾股定理即可求出BD的长.
试题解析:(1)证明:连接OD,如图1所示:
∵OD=OC,
∴∠DCB=∠ODC,
又∠DOB为△COD的外角,
∴∠DOB=∠DCB+∠ODC=2∠DCB,
又∵∠A=2∠DCB,
∴∠A=∠DOB,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠DOB+∠B=90°,
∴∠BDO=90°,
∴OD⊥AB,
又∵D在⊙O上,
∴AB是⊙O的切线;
(2)解法一:
过点O作OM⊥CD于点M,如图1,
∵OD=OE=BE=BO,∠BDO=90°,
∴∠B=30°,
∴∠DOB=60°,
∵OD=OC,
∴∠DCB=∠ODC,
又∵∠DOB为△ODC的外角,
∴∠DOB=∠DCB+∠ODC=2∠DCB,
∴∠DCB=30°,
∵在Rt△OCM中,∠DCB=30°,OM=1,
∴OC=2OM=2,
∴OD=2,BO=BE+OE=2OE=4,
∴在Rt△BDO中,根据勾股定理得:BD=;
解法二:
过点O作OM⊥CD于点M,连接DE,如图2,
∵OM⊥CD,
∴CM=DM,又O为EC的中点,
∴OM为△DCE的中位线,且OM=1,
∴DE=2OM=2,
∵在Rt△OCM中,∠DCB=30°,OM=1,
∴OC=2OM=2,
∵Rt△BDO中,OE=BE,
∴DE=BO,
∴BO=BE+OE=2OE=4,
∴OD=OE=2,
在Rt△BDO中,根据勾股定理得BD=.
考点: 1.切线的判定;2.含30度角的直角三角形;3.垂径定理;4圆周角定理.
科目:初中数学 来源: 题型:
【题目】某商场为了吸引顾客,设立了一个可以自由转动的转盘(如下图),并规定:购买100元的商品,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准红、绿、黄、白区域,那么顾客就可以分别得到80元、30元、10元、0元的购物券,凭购物券仍然可以在商场购物;如果顾客不愿意转转盘,那么可以直接获得购物券10元.
(1)每转动一次转盘所获购物券金额的平均数是多少?
(2)若在此商场购买100元的货物,那么你将选择哪种方式获得购物券?
(3)小明在家里也做了一个同样的转盘做实验,转10次后共获得购物券96元,他说还是不转转盘直接领取购物券合算,你同意小明的说法吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图已知:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:
(1)∠ECD=∠EDC;
(2)OE是CD的垂直平分线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y1=-x+b的图象交x轴于点A(3,0),与一次函数y2=x+1的图象交于点B,
(1)求一次函数y1=-x+b的表达式;
(2)当x取哪些值时,0<y1<y2?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,点D,E分别在边AC,AB上,且AD=BE,BD,CE交于点P,CF⊥BD,垂足为点F.
(1)求证:BD=CE;
(2)若PF=3,求CP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读材料)
南京市地铁公司规定:自2019年3月31日起,普通成人持储值卡乘坐地铁出行,每个自然月内,达到规定消费累计金额后的乘次,享受相应的折扣优惠(见图).地铁出行消费累计金额月底清零,次月重新累计.
比如:李老师二月份无储值卡消费260元,若采用新规持储值卡消费,则需付费150×0.95+50×0.9+60×0.8=235.5元.
(解决问题)
甲、乙两个成人二月份无储值卡乘坐地铁消费金额合计300元(甲消费金额超过150元,但不超过200元).若两人采用新规持储值卡消费,则共需付费283.5元.求甲、乙二月份乘坐地铁的消费金额各是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,点A、B、C三点的坐标分别为(-2,3)(-3,1)(-5,2),将△ABC先右平移3个单位,再向下平移1个单位得到△DEF.
(1)画出△DEF,并写出点D,E,F的坐标;
(2)求△DEF的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com