【题目】将在同一平面内如图放置的两块三角板绕公共顶点A旋转,连接BC,DE.探究S△ABC与S△ADC的比是否为定值.
(1)两块三角板是完全相同的等腰直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图①)
(2)一块是等腰直角三角板,另一块是含有30°角的直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图②)
(3)两块三角板中,∠BAE+∠CAD=180°,AB=a,AE=b,AC=m,AD=n(a,b,m,n为常数),S△ABC:S△ADE是否为定值?如果是,用含a,b,m,n的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③)
【答案】(1)结论:S△ABC:S△ADE=1,为定值.理由见解析;(2)S△ABC:S△ADE=,为定值,理由见解析;(3)S△ABC:S△ADE=,为定值.理由见解析.
【解析】
(1)结论:S△ABC:S△ADE=定值.如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.首先证明∠DAE=∠CAG,利用三角形的面积公式计算即可.
(2)结论:S△ABC:S△ADE=定值.如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.首先证明∠DAE=∠CAG,利用三角形的面积公式计算即可.
(3)结论:S△ABC:S△ADE=定值.如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.首先证明∠DAE=∠CAG,利用三角形的面积公式计算即可.
(1)结论:S△ABC:S△ADE=定值.
理由:如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.
∵∠BAE=∠CAD=90°,
∴∠BAC+∠EAD=180°,∠BAC+∠CAG=180°,
∴∠DAE=∠CAG,
∵AB=AE=AD=AC,
∴1.
(2)如图2中,S△ABC:S△ADE=定值.
理由:如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.
不妨设∠ADC=30°,则ADAC,AE=AB,
∵∠BAE=∠CAD=90°,
∴∠BAC+∠EAD=180°,∠BAC+∠CAG=180°,
∴∠DAE=∠CAG,
∴.
(3)如图3中,如图2中,S△ABC:S△ADE=定值.
理由:如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.
∵∠BAE=∠CAD=90°,
∴∠BAC+∠EAD=180°,∠BAC+∠CAG=180°,
∴∠DAE=∠CAG,
∵AB=a,AE=b,AC=m,AD=n
∴.
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,∠B=30°,AB=12cm,以AC为直径的半圆O交AB于点D,点E是AB的中点,CE交半圆O于点F,则图中阴影部分的面积为______cm2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,10×10的网格中,A,B,C均在格点上,诮用无刻度的直尺作直线MN,使得直线MN平分△ABC的周长(留作图痕迹,不写作法)
(1)请在图1中作出符合要求的一条直线MN;
(2)如图2,点M为BC上一点,BM=5.请在AB上作出点N的位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形的顶点、在轴上(在的左侧),顶点、在轴上方,对角线的长是,点为的中点,点在菱形的边上运动.当点到所在直线的距离取得最大值时,点恰好落在的中点处,则菱形的边长等于( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形纸片ABCD的边AB,BC的长分别是10cm和7.5cm,将其四个角向内对折后,点B与点C重合于点C',点A与点D重合于点A′.四条折痕围成一个“信封四边形”EHFG,其顶点分别在平行四边形ABCD的四条边上,则EF=__cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了增强学生的安全意识,某校组织了一次全校2500名学生都参加的“安全知识”考试.阅卷后,学校团委随机抽取了100份考卷进行分析统计,发现考试成绩(分)的最低分为51分,最高分为满分100分,并绘制了如下尚不完整的统计图表.请根据图表提供的信息,解答下列问题:
分数段(分) | 频数(人) | 频率 |
0.1 | ||
18 | 0.18 | |
35 | 0.35 | |
12 | 0.12 | |
合计 | 100 | 1 |
(1)填空:______,______,______;
(2)将频数分布直方图补充完整;
(3)该校对考试成绩为的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ADB中,∠ADB=90°,∠DAB=30°,⊙O为△ADB的外接圆,DH⊥AB于点H,现将△AHD沿AD翻折得到△AED,AE交⊙O于点C,连接OC交AD于点G.
(1)求证:DE是⊙O的切线;
(2)若AB=10,求线段OG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是( )
A. ﹣<m<3 B. ﹣<m<2 C. ﹣2<m<3 D. ﹣6<m<﹣2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为矩形,以A为圆心,AD为半径的弧交AB的延长线于点E,连接BD,若AD=2AB=4,则图中阴影部分的面积为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com