精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,四边形ABCD是梯形,其中A(6,0),B(3,数学公式),C(1,数学公式),动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒).
(1)求经过A,B,C三点的抛物线的解析式;
(2)当点Q在CO边上运动时,求△OPQ的面积S与时间t的函数关系式;
(3)以O,P,Q顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由;
(4)经过A,B,C三点的抛物线的对称轴、直线OB和PQ能够交于一点吗?若能,请求出此时t的值(或范围),若不能,请说明理由).

解:(1)设所求抛物线的解析式为y=ax2+bx+c,把A(6,0),B(3,),C(1,)三点坐标代入得:

解得:
即所求抛物线解析式为:y=-x2+x+

(2)如图1,依据题意得出:OC=CB=2,∠COA=60°,
∴当动点Q运动到OC边时,OQ=4-t,
∴△OPQ的高为:OQ×sin60°=(4-t)×
又∵OP=2t,
∴S=×2t×(4-t)×=-(t2-4t)(2≤t≤3);

(3)根据题意得出:0≤t≤3,
当0≤t≤2时,Q在BC边上运动,此时OP=2t,OQ=
PQ==
∵∠POQ<∠POC=60°,
∴若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,
若∠OPQ=90°,如图2,则OP2+PQ2=QO2,即4t2+3+(3t-3)2=3+(3-t)2
解得:t1=1,t2=0(舍去),
若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,
若∠OQP=90°,如图,3,则OQ2+PQ2=PO2,即(3-t)2+6+(3t-3)2=4t2
解得:t=2,
当2<t≤3时,Q在OC边上运动,此时QP=2t>4,
∠POQ=∠COP=60°,
OQ<OC=2,
故△OPQ不可能为直角三角形,
综上所述,当t=1或t=2时,△OPQ为直角三角形;

(4)由(1)可知,抛物线y=-x2+x+=-(x-2)2+
其对称轴为x=2,
又∵OB的直线方程为y=x,
∴抛物线对称轴与OB交点为M(2,),
又∵P(2t,0)
设过P,M的直线解析式为:y=kx+b,

解得:
即直线PM的解析式为:y=x-
(1-t)y=x-2t,
又0≤t≤2时,Q(3-t,),代入上式,得:
(1-t)×=3-t-2t,恒成立,
即0≤t≤2时,P,M,Q总在一条直线上,
即M在直线PQ上;
当2<t≤3时,OQ=4-t,∠QOP=60°,
∴Q(),
代入上式得:×(1-t)=-2t,
解得:t=2或t=(均不合题意,舍去).
∴综上所述,可知过点A、B、C三点的抛物线的对称轴OB和PQ能够交于一点,此时0≤t≤2.
分析:(1)利用待定系数法求出二次函数解析式即可;
(2)根据已知得出△OPQ的高,进而利用三角形面积公式求出即可;
(3)根据题意得出:0≤t≤3,当0≤t≤2时,Q在BC边上运动,得出若△OPQ为直角三角形,只能是∠OPQ=90°或∠OQP=90°,当2<t≤3时,Q在OC边上运动,得出△OPQ不可能为直角三角形;
(4)首先求出抛物线对称轴以及OB直线解析式和PM的解析式,得出(1-t)×=3-t-2t,恒成立,即0≤t≤2时,P,M,Q总在一条直线上,再利用2<t≤3时,求出t的值,根据t的取值范围得出答案.
点评:此题主要考查了二次函数的综合应用以及待定系数法求二次函数解析式和待定系数法求一次函数解析式等知识,利用分类讨论思想得出t的值是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案