精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=x2+bx+c与x轴交于点A、B,AB=2,与y轴交于点C,对称轴为直线x=2,对称轴交x轴于点M.

(1)求抛物线的函数解析式;
(2)设P为对称轴上一动点,求△APC周长的最小值;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A、B、D、E为顶点的四边形是菱形,则点D的坐标为

【答案】
(1)

解:抛物线与x轴交于点A、B,且AB=2,

根据对称性,得AM=MB=1,

∵对称轴为直线x=2,

∴OA=1,OB=3,

∴点A、B的坐标分别为(1,0)、(3,0),

把A、B两点坐标代入y=x2+bx+c,得到

解得

∴抛物线的解析式为:y=x2﹣4x+3


(2)

解:如图1中,连结BC,与对称轴交点则为点P,连接AP、AC.

由线段垂直平分线性质,得AP=BP,

∴CB=BP+CP=AP+CP,

∴AC+AP+CP=AC+BC,

根据“两点之间,线段最短”,得△APC周长的最小,

∵C为(0,3)

∴OC=3,

在Rt△AOC中,有AC= =

在Rt△BOC中,有BC= =3

∴△APC的周长的最小值为: +3


(3)(2,﹣1)
【解析】解: (3)如图2中,当点D为抛物线的顶点时,EM=DM时,以点A、B、D、E为顶点的四边形是菱形,此时点D(2,﹣1)

所以答案是D(2,﹣1).
【考点精析】关于本题考查的二次函数的图象和二次函数的性质,需要了解二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,B=C=65°BD=CEBE=CF,若A=50°,则DEF的度数是(  )

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子.
(1)以水平的地面为x轴,两棵树间距离的中点O为原点,建立如图所示的平面直角坐标系,求出抛物线的解析式;
(2)求绳子的最低点离地面的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC= ,则图中阴影部分的面积等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣2 x+m=0有两个不相等的实数根.
(1)求实数m的取值范围;
(2)在(1)的条件下,化简:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为(
A.80°
B.70°
C.65°
D.60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程 (3x﹣1)2=(x﹣1)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度﹣20℃时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到﹣4℃时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至﹣20℃时,制冷再次停止,…,按照以上方式循环进行. 同学们记录了44min内15个时间点冷柜中的温度y(℃)随时间x(min)的变化情况,制成下表:

时间x/min

4

8

10

16

20

21

22

23

24

28

30

36

40

42

44

温度y/℃

﹣20

﹣10

﹣8

﹣5

﹣4

﹣8

﹣12

﹣16

﹣20

﹣10

﹣8

﹣5

﹣4

a

﹣20


(1)通过分析发现,冷柜中的温度y是时间x的函数. ①当4≤x<20时,写出一个符合表中数据的函数解析式
②当20≤x<24时,写出一个符合表中数据的函数解析式
(2)a的值为
(3)如图,在直角坐标系中,已描出了上表中部分数据对应的点,请描出剩余数据对应的点,并画出当4≤x≤44时温度y随时间x变化的函数图象.

查看答案和解析>>

同步练习册答案