精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,弦CD⊥AB于点H,点G在弧BD上,连接AG,交CD于点K,过点G的直线交CD延长线于点E,交AB延长线于点F,且EG=EK.

(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为13,CH=12,AC∥EF,求OH和FG的长.

【答案】
(1)证明:连接OG,

∵弦CD⊥AB于点H,

∴∠AHK=90°,

∴∠HKA+∠KAH=90°,

∵EG=EK,

∴∠EGK=∠EKG,

∵∠HKA=∠GKE,

∴∠HAK+∠KGE=90°,

∵AO=GO,

∴∠OAG=∠OGA,

∴∠OGA+∠KGE=90°,

∴GO⊥EF,

∴EF是⊙O的切线


(2)解:连接CO,在Rt△OHC中,

∵CO=13,CH=12,

∴HO=5,

∴AH=8,

∵AC∥EF,

∴∠CAH=∠F,

∴tan∠CAH=tan∠F= =

在Rt△OGF中,∵GO=13,

∴FG= =


【解析】(1)连接OG,首先证明∠EGK=∠EKG,再证明∠HAK+∠KGE=90°,进而得到∠OGA+∠KGE=90°即GO⊥EF,进而证明EF是⊙O的切线;(2)连接CO,利用勾股定理计算出HO的长,然后可得tan∠CAH=tan∠F= = ,再利用三角函数在Rt△OGF中计算出FG的长.
【考点精析】解答此题的关键在于理解切线的判定定理的相关知识,掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线,以及对解直角三角形的理解,了解解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,E在AC上,AE=2EC,F在AB上,BF=2AF,如果ΔBEF的面积为4cm2,求平行四边形ABCD的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心, cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.
(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;

(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠DAE=∠BAF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图所示,B、C、D三点在同一条直线上,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是(  )

A. A与D互为余角 B. ∠A=∠2 C. △ABC≌△ CED D. ∠1=∠2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若BAC=80°,则BCA的度数为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一只甲虫在55的方格(每一格边长为1)上沿着网格线运动,A处出发去看望B、C、D处的甲虫,规定:向上向右为正,向下向左为负.例如:从AB记为:(+1,+3);从CD 记为:(+1,-2),其中第一个数表示左右方向,第二个数表示上下方向.

(1)填空:记为 ), 记为 );

(2)若甲虫的行走路线为:,请你计算甲虫走过的路程.

(3)若这只甲虫去Q的行走路线依次为:A→M(+2,+2),M→N(+2,-1),N→P(-2,+3),P→Q(-1,-2),请依次在图2标出点M、N、P、Q的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结 合.研究数轴我们发现了许多重要的规律:若数轴上点 A、点 B 表示的数分别为 a、b,则AB 两点之间的距离 AB= ,线段 AB 的中点表示的数为 .

【问题情境】如图,数轴上点A表示的数为-2,点B表示的数为8,点P从点 A 出发, 以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒 2个单 位长度的速度向左匀速运动,设运动时间为t(t>0).

【综合运用】(1) 填空:

①A、B两点之间的距离AB=__________,线段AB的中点表示的数为_______

②用含t的代数式表示:t秒后,点P表示的数为_______;点Q表示的数为_____.

(2) 求当t为何值时,P、Q 两点相遇,并写出相遇点所表示的数;

(3)求当t为何值时,PQ=AB

(4)若点M为PA的中点,点N为PB的中点,点 P在运动过程中,线段MN的长度是否发 生变化?若变化,请说明理由;若不变,请求出线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,点DBC边上,点EAC的延长线上,DEDA

(1)求证:∠BAD=∠EDC

(2)作出点E关于直线BC的对称点M,连接DMAM,猜想DMAM的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案