分析 连接AC,根据圆周角定理可推出∠DBA=∠DCA,∠BCA=90°,可求出∠CBA+∠CAB=90°,由外角的性质可得∠CAB=∠E+∠DCA,通过等量代换即得∠DBC+∠DBA+∠E+∠DBA=90°,求出∠DBA的度数,即可得出结果.
解答 解:连接AC,如图所示:![]()
∵∠DBA和∠DCA都为$\widehat{AD}$所对的圆周角,
∴∠DBA=∠DCA,
∵AB为⊙O的直径,
∴∠BCA=90°,
∴∠CBA+∠CAB=90°,
∵∠CAB=∠E+∠DCA,
∴∠CBD+∠DBA+∠E+∠DBA=90°,
∵∠E=25°,∠DBC=45°,
∴∠DBA=10°,
∴∠CBE=∠DBA+∠DBC=10°+45°=55°.
故答案为:55.
点评 本题主要考查圆周角定理、直角三角形的性质、三角形外角的性质;关键在于正确的作出辅助线,熟练运用相关的性质定理求出相关角之间的等量关系,认真进行等量代换列出等式∠CBD+∠DBA+∠E+∠DBA=90°,求出∠DBA的度数.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | a≥2 | B. | a≤2 | C. | a<2 | D. | a>2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com