分析 由已知条件得到$\frac{AB}{AD}=\frac{AC}{AE}$,由∠BAC=∠DAE,推出△ABC∽△ADE,根据相似三角形的性质得到$\frac{BC}{DE}=\frac{AB}{AD}$=2,由于AM⊥BC,AN⊥DE,根据相似三角形的性质即可得到结论.
解答 解:∵$\frac{AB}{AD}=\frac{8}{4}$=2,$\frac{AC}{AE}=\frac{4}{2}$=2,
∴$\frac{AB}{AD}=\frac{AC}{AE}$,
∵∠BAD=∠CAE,
∴∠BAC=∠DAE,
∴△ABC∽△ADE,
∴$\frac{BC}{DE}=\frac{AB}{AD}$=2,
∵AM⊥BC,AN⊥DE,
∴$\frac{AM}{AN}=\frac{BC}{DE}$=2,
故答案为:2.
点评 本题考查了相似三角形的判定和性质,解答本题的关键是掌握相似三角形对应边上的高的比等于相似比.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (2,2) | B. | (-2,2) | C. | (-2,-2) | D. | (2,-2) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{3}-1$ | B. | $\sqrt{5}$ | C. | $\sqrt{2}+1$ | D. | $\sqrt{3}+1$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com