如图,在平面直角坐标系中,直线
:y=-2x+b (b≥0)的位置随b的不同取值而变化.
(1)已知⊙M的圆心坐标为(4,2),半径为2.
当b= 时,直线
:y=-2x+b (b≥0)经过圆心M:
当b= 时,直线
:y=-2x+b(b≥0)与OM相切:
(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2).
设直线
扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式,![]()
![]()
解:(1)10;
。
(2)由A(2,0)、B(6,0)、C(6,2),根据矩形的性质,得D(2,2)。
如图,当直线
经过A(2,0)时,b=4;当直线
经过D(2,2)时,b=6;当直线
经过B(6,0)时,b=12;当直线
经过C(6,2)时,b=14。![]()
当0≤b≤4时,直线
扫过矩形ABCD的面积S为0。
当4<b≤6时,直线
扫过矩形ABCD的面积S为△EFA的面积(如图1),![]()
在 y=-2x+b中,令x=2,得y=-4+b,则E(2,-4+b),
令y=0,即-2x+b=0,解得x=
,则F(
,0)。
∴AF=
,AE=-4+b。
∴S=
。
当6<b≤12时,直线
扫过矩形ABCD的面积S为直角梯形DHGA的面积(如图2),![]()
在 y=-2x+b中,令y=0,得x=
,则G(
,0),
令y=2,即-2x+b=2,解得x=
,则H(
,2)。
∴DH=
,AG=
。AD=2
∴S=
。
当12<b≤14时,直线
扫过矩形ABCD的面积S为五边形DMNBA的面积=矩形ABCD的面积-△CMN的面积(如图3)![]()
在 y=-2x+b中,令y=2,即-2x+b=2,解得x=
,则M(
,0),
令x=6,得y=-12+b,,则N(6,-12+b)。
∴MC=
,NC=14-b。
∴S=
。
当b>14时,直线
扫过矩形ABCD的面积S为矩形ABCD的面积,面积为民8。
综上所述。S与b的函数关系式为:
。
解析
科目:初中数学 来源: 题型:
| BD |
| AB |
| 5 |
| 8 |
查看答案和解析>>
科目:初中数学 来源: 题型:
| 5 |
| 29 |
| 5 |
| 29 |
查看答案和解析>>
科目:初中数学 来源: 题型:
| k |
| x |
| k |
| x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com