【题目】小邱同学根据学习函数的经验,研究函数y=的图象与性质.通过分析,该函数y与自变量x的几组对应值如下表,并画出了部分函数图象如图所示.
x | 1 |
|
|
| 3 | 4 | 5 | 6 | … |
y | ﹣1 | ﹣2 | ﹣3.4 | ﹣7.5 | 2.4 | 1.4 | 1 | 0.8 | … |
(1)函数y=的自变量x的取值范围是 ;
(2)在图中补全当1≤x<2的函数图象;
(3)观察图象,写出该函数的一条性质: ;
(4)若关于x的方程=x+b有两个不相等的实数根,结合图象,可知实数b的取值范围是 .
【答案】(1)x≥1且x≠2;(2)详见解析;(3)当1≤x<2(或x>2)时,y随x的增大而减小;(4)b≤﹣2.
【解析】
(1)根据函数表达式中,根号内的被开方数为非负数以及分母不为零,即可得到自变量x的取值范围;
(2)根据列表中的对应值进行描点、连线,即可得到当1≤x<2时的函数图象;
(3)根据函数图象的增减性,即可得到该函数的一条性质;
(4)根据函数y=和y=x+b的图象可知:当b>﹣2时,有一个交点;当b≤﹣2时,有两个交点,据此即可得到实数b的取值范围.
(1)由x﹣1≥0且x﹣1≠1,可得x≥1且x≠2;
(2)当1≤x<2的函数图象如图所示:
(3)由图可得,当1≤x<2(或x>2)时,函数图象从左往右下降,即y随x的增大而减小;
(4)关于x的方程=x+b有两个不相等的实数根,结合图象,可知实数b的取值范围是b≤﹣2.
故答案为:x≥1且x≠2;当1≤x<2(或x>2)时,y随x的增大而减小;b≤﹣2.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中E为AD的中点,连接EC.
(1)作AEF∽DCE,点F在边AB上(要求:尺规作图,不写作法,保留作图痕迹):
(2)在(1)的条件下,连接CF,求证:AEF∽ECF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司购买了一批、型芯片,其中型芯片的单价比型芯片的单价少9元,已知该公司用3120元购买型芯片的条数与用4200元购买型芯片的条数相等.
(1)求该公司购买的、型芯片的单价各是多少元?
(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条型芯片?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知菱形ABCD的顶点A(0,﹣1),∠DAC=60°.若点P从点A出发,沿A→B→C→D→A…的方向,在菱形的边上以每秒0.5个单位长度的速度移动,则第2020秒时,点P的坐标为( )
A.(2,0)B.(,0)C.(﹣,0)D.(0,1 )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境:
在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2cm,AC=4cm.
操作发现:
(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使,得到如图2所示的△,过点C作的平行线,与的延长线交于点E,则四边形的形状是 .
(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B、A、D三点在同一条直线上,得到如图3所示的△,连接,取的中点F,连接AF并延长至点G,使FG=AF,连接CG、,得到四边形,发现它是正方形,请你证明这个结论.
实践探究:
(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至点,与相交于点H,如图4所示,连接,试求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在RtABC中,∠C=90°,以顶点B为圆心,适当长度为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于的长为半径画弧,两弧交于点P,作射线BP交AC于点D.当∠A=30°时,小敏正确求得:=1:2.写出两条小敏求解中用到的数学依据:__________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知点P是反比例函数图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.
(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.
(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时,
①求过点A,B,C三点的抛物线解析式;
②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的?若存在,直接写出所有满足条件的M点的坐标;若不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:是的内接三角形,点为的中点,弦分别交,于点,,且.
(1)如图1,求证:;
(2)如图2,过点作,交的延长线于点,与的另一个交点为点,连接交于点,若,求证:;
(3)如图3,在(2)的条件下,连接,若,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC = BC,∠C=90°,点D是BC的中点,DE⊥AD交BC于点E.若AC =1,则△BDE的面积为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com