精英家教网 > 初中数学 > 题目详情

【题目】如图,以△ABC的边AC为直径的O恰为△ABC的外接圆,∠ABC的平分线交O于点D,过点DDEACBC的延长线于点E

(1)求证: DEO的切线;

(2)若AB=2BC,求DE的长.

【答案】(1)详见解析;(2)DE

【解析】

(1)直接利用圆周角定理以及结合切线的判定方法得出DE是⊙O的切线;

(2)首先过点CCGDE,垂足为G,则四边形ODGC为正方形,得出tanCEG=tanACB,,即可求出答案.

(1)证明:连接OD

AC是⊙O的直径,

∴∠ABC=90°,

BD平分∠ABC

∴∠ABD=45°,

∴∠AOD=90°,

DEAC

∴∠ODEAOD=90°,

DE是⊙O的切线;

(2)解:在RtABC中,AB=2BC

AC

OD

过点CCGDE,垂足为G

则四边形ODGC为正方形,

DGCGOD

DEAC

∴∠CEGACB

tanCEG=tanACB

,即,

解得:GE

DEDG+GE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,用16张不同的直角三角形纸片拼成一个海螺的图形,直角的位置、长为1的线段均已标出,则与这海螺图形周长最接近的整数是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.

请根据图中的信息,回答下列问题:

(1)这次抽样调查中共调查了  人;

(2)请补全条形统计图;

(3)扇形统计图中18﹣23岁部分的圆心角的度数是  

(4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC内接于OABO的直径,作EGABH,交BCF,延长GE交直线MCD,且∠MCA=∠B求证:

(1)MCO的切线;

(2)△DCF是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,DOAB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BCDO于点F.

(1)求证:CE=EF;

(2)连接AF并延长,交⊙O于点G.填空:

①当∠D的度数为   时,四边形ECFG为菱形;

②当∠D的度数为   时,四边形ECOG为正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB=2,BC=1,运点P从点B出发,沿路线BCD作匀速运动,那么ABP的面积与点P运动的路程之间的函数图象大致是( ).

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知DEEA,斜坡CD的长度为30m,DE的长为15m,则树AB的高度是_____m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形 ABCD 中,AB5AD3.以点 B 为中心,顺时针旋转矩形 BADC,得到矩形 BEFG,点 A、DC 的对应点分别为 EFG

1)如图1,当点 E 落在 CD 边上时,求线段 CE 的长;

2)如图2,当点 E 落在线段 DF 上时,求证:∠ABD=∠EBD

3)在(2)的条件下,CDBE 交于点 H,求线段 DH 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.

(1)求一次函数y=kx+b的关系式;

(2)结合图象,直接写出满足kx+b>的x的取值范围;

(3)若点P在x轴上,且SACP=SBOC,求点P的坐标.

查看答案和解析>>

同步练习册答案