5£®Èçͼ£¬ÔÚRt¡÷ABP1ÖУ¬¡ÏAP1B=Rt¡Ï£¬¡ÏA=30¡ã£¬BP1=2£¬¹ýµãP1×÷P1Q1¡ÍAB£¬´¹×ãQ1£¬¹ýµãQ1×÷Q1P2¡ÍAP1£¬´¹×ãP2£¬¹ýµãP2×÷P2Q2¡ÍAB£¬´¹×ãQ2£¬¡­Èç´ËÎÞÏÞÏÂÈ¥£¬µÃµ½Ò»ÏµÁÐÒõÓ°Èý½ÇÐΡ÷P1Q1P2¡¢¡÷P2Q2P3¡¢¡÷P3Q3P4¡­£¬ÔòËùÓÐÕâЩÒõÓ°Èý½ÇÐεÄÃæ»ýºÍÊÇ£¨¡¡¡¡£©
A£®$\sqrt{3}$B£®$\frac{3}{4}\sqrt{3}$C£®$\frac{6}{7}\sqrt{3}$D£®²»ÄÜÈ·¶¨

·ÖÎö Ïȸù¾ÝÈñ½ÇÈý½Çº¯ÊýµÄ¶¨ÒåÇó³öAP1£¬BQ1£¬Q1P1¼°Q1P2µÄ³¤£¬ÔÙÇó³ö$\frac{{S}_{{¡÷O}_{1}{P}_{1}{P}_{2}}}{{S}_{{¡÷BP}_{1}{Q}_{1}}}$µÄÖµ£¬ÕÒ³ö¹æÂɼ´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º¡ßÔÚRt¡÷ABP1ÖУ¬¡ÏAP1B=Rt¡Ï£¬¡ÏA=30¡ã£¬BP1=2£¬
¡àAP1=$\frac{{BP}_{1}}{tan30¡ã}$=$\frac{2}{\frac{\sqrt{3}}{3}}$=2$\sqrt{3}$£¬¡ÏB=60¡ã£®
¡ßP1Q1¡ÍAB£¬
¡àBQ1=BP1•cos60¡ã=2¡Á$\frac{1}{2}$=1£¬Q1P1=$\sqrt{3}$£®
¡ßQ1P2¡ÍAP1£¬
¡àQ1P2=P1Q1•sin60¡ã=$\sqrt{3}$¡Á$\frac{\sqrt{3}}{2}$=$\frac{3}{2}$£¬Q1P2¡ÎBP1£¬
¡à$\frac{{S}_{{¡÷O}_{1}{P}_{1}{P}_{2}}}{{S}_{{¡÷BP}_{1}{Q}_{1}}}$=$\frac{{Q}_{1}{P}_{2}}{{BP}_{1}}$=$\frac{\frac{3}{2}}{2}$=$\frac{3}{4}$£¬
¡ßS¡÷BP1Q1=$\frac{1}{2}$¡Á1¡Á$\sqrt{3}$=$\frac{\sqrt{3}}{2}$£¬
¡àS¡÷Q1P1P2=$\frac{3\sqrt{3}}{8}$£¬
¡à$\frac{{S}_{{¡÷O}_{1}{P}_{1}{P}_{2}}}{{S}_{ËıßÐÎBP1P2Q1}}$=$\frac{\frac{3\sqrt{3}}{8}}{\frac{\sqrt{3}}{2}+\frac{3\sqrt{3}}{8}}$=$\frac{3}{7}$£®
ͬÀí¿ÉµÃ£¬$\frac{{S}_{{¡÷O}_{2}{P}_{2}{P}_{3}}}{{S}_{ËıßÐÎO2Q1P2P3}}$=$\frac{3}{7}$£¬¡­£¬
¡àSÒõÓ°=$\frac{3}{7}$S¡÷ABP1=$\frac{3}{7}$¡Á$\frac{1}{2}$¡Á2$\sqrt{3}$¡Á2=$\frac{6\sqrt{3}}{7}$£®
¹ÊÑ¡C£®

µãÆÀ ±¾Ì⿼²éµÄÊÇÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬ÊìÖª¸ßÏàµÈµÄÈý½ÇÐÎÃæ»ýµÄ±ÈµÈÓڵױߵıÈÊǽâ´ð´ËÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÓÐÒ»¸ö¶àÏîʽΪ£º-x+2x2-4x3+8x4-16x5+¡­£º°´´Ë¹æÂÉдÏÂÈ¥£¬µÚ100ÏîÊÇ299x100£¬µÚ2009ÏîÊÇ-22008x2009£¬µÚn¸öÏîÊÇ£¨-1£©n2n-1xn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚ¡ÑOÖУ¬°ë¾¶OA¡ÍOB£¬¡ÏB=28¡ã£¬Çó¡ÏBOCµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÑÖªµãA£¨0£¬4£©¡¢B£¨4£¬4£©ºÍC£¨6£¬2£©£®
£¨1£©µãA¡¢B¡¢CÄÜÈ·¶¨Ò»¸öÔ²Âð£¿ËµÃ÷ÀíÓÉ£»
£¨2£©Èç¹ûÄÜ£¬Óó߹æ×÷ͼµÄ·½·¨£¬×÷³ö¹ýÕâÈýµãµÄÔ²µÄ¹ì¼££»
£¨3£©Ð´³öÔ²ÐÄPµÄ×ø±ê£¬²¢Çó³ö¡ÑPµÄ°ë¾¶£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑ֪ƽÐÐËıßÐεÄ×î´ó½Ç±È×îС½Ç´ó100¡ã£¬ÇóËüµÄ¸÷¸öÄڽǵĶÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª£¬ÔÚRt¡÷OABÖУ¬¡ÏOAB=90¡ã£¬¡ÏBOA=30¡ã£¬AB=2£®ÈôÒÔOÎª×ø±êÔ­µã£¬OAËùÔÚÖ±ÏßΪxÖᣬ½¨Á¢ÈçͼËùʾµÄÆ½ÃæÖ±½Ç×ø±êϵ£¬µãBÔÚµÚÒ»ÏóÏÞÄÚ£®½«Rt¡÷OABÑØOBÕÛµþºó£¬µãAÂäÔÚµÚÒ»ÏóÏÞÄڵĵãC´¦£®
£¨1£©ÇóµãCµÄ×ø±ê£®
£¨2£©ÈôÅ×ÎïÏßy=ax2+bx£¨a¡Ù0£©¾­¹ýC¡¢AÁ½µã£¬Çó´ËÅ×ÎïÏߵĽâÎöʽ£®
£¨3£©HÊÇÏß¶ÎOAÉϵÄÒ»µã£¬¹ýµãH×÷PH¡ÍxÖᣬÓëÅ×ÎïÏß½»ÓÚPµã£¬ÈôÖ±ÏßOB°Ñ¡÷POH·Ö³ÉÃæ»ýÖ®±ÈΪ1£º2µÄÁ½²¿·Ö£¬ÇëÇó³öPµãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÓÿÆÑ§¼ÇÊý·¨±íʾ21000ǧÃ×£¬¼Ç×÷2.1¡Á104ǧÃ×£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Ò»´Îº¯ÊýµÄÒ»°ãÐÎʽÊÇ£¨k¡¢bÊdz£Êý£©£¨¡¡¡¡£©
A£®y=kx+bB£®y=kxC£®y=kx+b£¨k¡Ù0£©D£®y=x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Ò»¸öÎïÌå×ö×óÓÒ·½ÏòµÄÔ˶¯£¬Èç¹ûÏò×óÔ˶¯2m¼Ç×÷+2m£¬ÄÇôÏòÓÒÔ˶¯3m¼Ç×÷-3m£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸