【题目】如图,⊙O为Rt△ABC的外接圆,弦AC的弦心距为5.
(1)尺规作图:作出∠BOC的平分线,并标出它与劣弧BC的交点E.(保留作图痕迹,不写作法);
(2)若(1)中的点E到弦BC的距离为3,求弦AC的长.
科目:初中数学 来源: 题型:
【题目】现有7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足( )
A. a=2bB. a=3bC. a=3.5bD. a=4b
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点A,C分别在x轴,y轴上,顶点B在第一象限,AB=1.将线段OA绕点O按逆时针方向旋转60°得到线段OP,连接AP,反比例函数(k≠0)的图象经过P,B两点,则k的值为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在不透明的袋子中有四张标着数字1,2,3,4的卡片,这些卡片除数字外都相同.小芸同学按照一定的规则抽出两张卡片,并把卡片上的数字相加.如图是她所画的树状图的一部分.
(1)由如图分析,小芸的游戏规则是:从袋子中随机抽出一张卡片后 (填“放回”或“不放回”),再随机抽出一张卡片;
(2)帮小芸完成树状图;
(3)求小芸两次抽到的数字之和为奇数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.
(1)概念理解:
如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.
(2)问题探究:
如图2,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.
(3)应用拓展:
如图3,已知l1∥l2,l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l2于点D.求CD的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为( )
A. 3 B. 1+ C. 1+3
D. 1+
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD于点E,
(1)求DE的长;
(2)过点EF作EF⊥CE,交AB于点F,求BF的长;
(3)过点E作EG⊥CE,交CD于点G,求DG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,O为坐标原点,点A坐标为(2,0),以OA为边在第一象限内作等边△OAB,C为x轴正半轴上的一个动点(OC>2),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.
(1)求证:△OBC≌△ABD
(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.
(3)以线段BC为直径作圆,圆心为点F,当C点运动到何处时,直线EF∥直线BO;这时⊙F和直线BO的位置关系如何?请给予说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过点M(﹣5,3)分别作x轴,y轴的垂线与反比例函数y=的图象交于A,B两点,若四边形MAOB的面积为24,则k=_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com