【题目】如图,在平面直角坐标系中,一个含有45°角的三角板的其中一个锐角顶点置于点A(﹣3,﹣3)处,将其绕点A旋转,这个45°角的两边所在的直线分别交x轴、y轴的正半轴于点B,C,连接BC,函数(x>0)的图象经过BC的中点D,则k=_____.
【答案】
【解析】
过A点作AM⊥x轴,AN⊥y轴,连接AO,根据A点坐标可知OA长度,再证明△AOC∽△BOA,根据得到的比例式计算出OBOC;过D点作DE⊥x轴,DF⊥y轴,根据D为BC中点可以计算出DEDF,从而确定了k值.
解:过A点作AM⊥x轴,AN⊥y轴,
则四边形AMON是正方形,连接AO.
由A(﹣3,﹣3),可得OA=.
则∠AOC=∠BOA=135°.
∴∠CAO+∠ACO=45°,
∵∠CAO+∠BAO=45°,
∴∠ACO=∠BAO.
∴△AOC∽△BOA.
∴,即OA2=OBOC=18.
∴△OBC面积=×18=9.
过D点作DE⊥x轴,DF⊥y轴,
∵D为BC中点,
∴DE=OD,DF=OB.
k=DEOF=OBOC=.
故答案为.
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的中线,过点C作直线CF∥AD.
(问题)如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,求证:AB=DE.
(探究)如图②,在线段AD上任取一点P,过点P作直线PG∥AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.
(应用)在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2+bx+3经过点A(﹣3,0),B(﹣1,0)两点,抛物线的顶点为M,直线y=﹣4x+9与y轴交于点C,与直线OM交于点D.
(1)求抛物线的解析式;
(2)过Q(0,3)作不平行于x轴的直线l
①如图2,将抛物线平移,当顶点至原点时,直线l交抛物线于点E、F,在y轴上存在一点P,使△PEF的内心在y轴上,求点P的坐标;
②直线l交△CMD的边CM、CD于点G、H(G点不与M点重合、H点不与D点重合).S四边形MDHG,S△CGH分别表示四边形MDHG和△CGH的面积,试探究的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.
(1)求证:△PFA∽△ABE;
(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件: .
备用图
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c的对称轴为x=﹣1,且过点(﹣3,0),(0,﹣3).
(1)求抛物线的表达式.
(2)已知点(m,k)和点(n,k)在此抛物线上,其中m≠n,请判断关于t的方程t2+mt+n=0是否有实数根,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,于点D,点E是直线AC上一动点,连接DE,过点D作,交直线BC于点F.
探究发现:
如图1,若,点E在线段AC上,则______;
数学思考:
如图2,若点E在线段AC上,则______用含m,n的代数式表示;
当点E在直线AC上运动时,中的结论是否任然成立?请仅就图3的情形给出证明;
拓展应用:若,,,请直接写出CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.甲、乙两种商品原来的单价各是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,点E、F在边BC上,点D在边AC上,连接ED、DF,=m,∠A=∠EDF=120°
(1)如图1,点E、B重合,m=1时
①若BD平分∠ABC,求证:CD2=CFCB;
②若,则= ;
(2)如图2,点E、B不重合.若BE=CF,=m,,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(4,﹣2)、B(﹣2,n)两点,与x轴交于点C.
(1)求k2,n的值;
(2)请直接写出不等式k1x+b<的解集;
(3)将x轴下方的图象沿x轴翻折,点A落在点A′处,连接A′B,A′C,求△A′BC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com