精英家教网 > 初中数学 > 题目详情

【题目】在创客教育理念的指引下,国内很多学校都纷纷建立创客实践室及创客空间,致力于从小培养孩子的创新精神和创造能力,郑州市某校开设了“3D”打印、数学编程、智能机器人、陶艺制作四门创客课程,为了解学生对这四门创客课程的喜爱情况,数学兴趣小组对全校学生进行了随机问卷调查(问卷调查表如表所示),将调查结果整理后绘制成图1、图2两幅均不完整的统计图表.

1

创客课程

频数

频率

A

36

0.45

B

0.25

C

16

b

D

8

合计

a

1

最受欢理的创客课程词查问卷

你好!这是一份关于你喜欢的创客深程问卷调查表,请你在表格中选择一个(只能选择一个)你最喜欢的课程选项在其后空格内打“√“,非常感谢你的合作.

选项

创客课程

A

“3D”打印

B

数学编程

C

智能机器人

D

陶艺制作

请根据图表中提供的值息回答下列问题:

1)统计表中的a   b   

2“D”对应扇形的圆心角为   

3)根据调查结果,请你估计该校2000名学生中最喜欢数学编程创客课程的人数.

【答案】1800.20;(236°;(3500.

【解析】

1)根据频数与频率的关系列式计算即可即可;

2)根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;

3)根据最喜欢数学编程创客课程的人数所占的百分比,即可得到人数.

解:(1a36÷0.4580

b16÷800.20

故答案为:800.20

2“D”对应扇形的圆心角的度数为:×360°36°

故答案为:36°

3)估计该校2000名学生中最喜欢数学编程创客课程的人数为:2000×0.25500(人).

故答案为:(1800.20;(236°;(3500.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一次安全知识测验中,学生得分均为整数,满分10分,成绩达到9分为优秀,这次测验中甲、乙两组学生人数相同,成绩如下两个统计图:

1)在乙组学生成绩统计图中,8分所在的扇形的圆心角为   度;

2)请补充完整下面的成绩统计分析表:

平均分

方差

众数

中位数

优秀率

甲组

7

1.8

7

7

20%

乙组

10%

3)甲组学生说他们的优秀率高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出两条支持乙组学生观点的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图平分

1】求的度数

2】如图,若把变成FDA的延长线上,,其它条件不变,求的度数;

3】如图,若把变成平分,其它条件不变,的大小是否变化,并请说明理由.(此题9分)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在RtABC中,ABAC3,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PDPE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形依次进行下去,则第2014个内接正方形的边长为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.

1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);

2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCADE是有公共顶点的三角形,∠BAC=∠DAE90°,点P为射线BDCE的交点.

(1) ①如图1,∠ADE=∠ABC45°,求证:∠ABD=∠ACE

②如图2,∠ADE=∠ABC30°,①中的结论是否成立?请说明理由.

(2)(1) ①的条件下,AB6AD4,若把ADE绕点A旋转,当∠EAC90°时,画图并求PB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax-2x+c(a≠0)x轴,y轴分别交于点ABC三点,已知点(-2,0)C(0,-8),点D是抛物线的顶点.

(1)求抛物线的解析式及顶点D的坐标;

(2)如图,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EB直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,求点P的坐标;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB、CD为⊙O的直径,弦AECD,连接BECD于点F,过点E作直线EPCD的延长线交于点P,使∠PED=C.

(1)求证:PE是⊙O的切线;

(2)求证:ED平分∠BEP.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

同步练习册答案