精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角三角形ABC中,∠ACB=90°,AB=10,sinB= ,点O是AB的中点,∠DOE=∠A,当∠DOE以点O为旋转中心旋转时,OD交AC的延长线于点D,交边CB于点M,OE交线段BM于点N.

(1)当CM=2时,求线段CD的长;
(2)设CM=x,BN=y,试求y与x之间的函数解析式,并写出定义域;
(3)如果△OMN是以OM为腰的等腰三角形,请直接写出线段CM的长.

【答案】
(1)

解:如图1中,作OH⊥BC于H.

在Rt△ABC中,∵AB=10,sinB=

∴AC=6,BC=8,

∵AO=OB,OH∥AC,

∴CH=HB=4,OH=3,

∵CM=2,

∴CM=HM=2,

在△DCM和△OHM中,

∴△DCM≌△OHM,

∴CD=OH=3.


(2)

解:解:如图2中,作NG⊥OB于G.

∵∠HOB=∠A=∠MON,

∴∠1=∠2,

在Rt△BNG中,BN=y,sibB=

∴GN= y,BG= y,

∵tan∠1=tan∠2,

=

=

∴y= ,(0<x<4)


(3)

①如图3中,当OM=ON时,OH垂直平分MN,

∴BN=CM=x,

∵△OMH≌△ONG,

∴NG=HM=4﹣x,

∵sinB=

=

∴CM=x=

②如图4中,当OM=MN时.连接CO,

∵OA=OB,OM=MN,

∴CO=OA=OB,

∴∠MON=∠MNO=∠A=∠OCA,

∴△MON∽△OAC,

∴∠AOC=∠OMN,

∴∠BOC=∠CMO,∵∠B=∠B,

∴△CMO∽△COB,

=

∴8x=52

∴x=

综上所述,△OMN是以OM为腰的等腰三角形时,线段CM的长为


【解析】(1)如图1中,作OH⊥BC于H.只要证明△DCM≌△OHM,即可得出CD=OH=3.(2)如图2中,作NG⊥OB于G.首先证明∠1=∠2,根据tan∠1=tan∠2,可得 = ,由此即可解决问题.(3)分两种情形讨论即可①如图3中,当OM=ON时,OH垂直平分MN,②如图4中,当OM=MN时,分别求解即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.

(1)请直接写出二次函数y=ax2+x+c的表达式;
(2)判断△ABC的形状,并说明理由;
(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;
(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的方程为 .以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ2﹣8ρsinθ+15=0. (Ⅰ)写出C1的参数方程和C2的直角坐标方程;
(Ⅱ)设点P在C1上,点Q在C2上,求|PQ|的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是矩形,cot∠ADB= ,AB=16.点E在射线BC上,点F在线段BD上,且∠DEF=∠ADB.

(1)求线段BD的长;
(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;
(3)当△DEF为等腰三角形时,求线段BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GEGD.
(1)求证:∠ACF=∠ABD;
(2)连接EF,求证:EFCG=EGCB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AD是⊙O的直径,BC是⊙O的弦,AD⊥BC,垂足为点E,AE=BC=16,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在四边形ABCD中,AD∥BC,E为边CB延长线上一点,联结DE交边AB于点F,联结AC交DE于点G,且 =
(1)求证:AB∥CD;
(2)如果AD2=DGDE,求证: =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,M为CD中点,分别以B、M为圆心,以BC长、MC长为半径画弧,两弧相交于点P,若∠PBC=70°,则∠MPC的度数为(
A.55°
B.40°
C.35°
D.20°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y= (a为常数)的图象经过点B(﹣4,2).

(1)求a的值;
(2)如图,过点B作直线AB与函数y= 的图象交于点A,与x轴交于点C,且AB=3BC,过点A作直线AF⊥AB,交x轴于点F,求线段AF的长.

查看答案和解析>>

同步练习册答案