精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角梯形OABC中,OABCAB两点的坐标分别为A130),B1112).动点PQ分别从OB两点出发,点P以每秒2个单位的速度沿x轴向终点A运动,点Q以每秒1个单位的速度沿BC方向运动;当点P停止运动时,点Q也同时停止运动.线段PQOB相交于点D,过点DDEx轴,交AB于点E,射线QEx轴于点F.设动点PQ运动时间为t(单位:秒).

(1)t为何值时,四边形PABQ是平行四边形.

(2)PQF的面积是否发生变化?若变化,请求出PQF的面积s关于时间t的函数关系式;若不变,请求出PQF的面积.

(3)随着PQ两点的运动,PQF的形状也随之发生了变化,试问何时会出现等腰PQF

【答案】(1)t=;(2)见解析;(3)见解析.

【解析】

(1)OP=2tQB=tPA=132t,根据平行四边形的性质(对边平行且相等)知,只需QB=PA,从而求得t

(2)根据平行线分线段成比例求得=;然后由平行线OBDEPA分线段成比例求得;利用等量代换求得AF=2QB=2tPF=OA=13;最后由三角形的面积公式求得PQF的面积;

(3)(2)知,PF=OA=13.分三种情况解答:①QP=FQ,作QGx轴于G,则11t2t=2t+13﹣(11t);②PQ=FP;③FQ=FP

解:(1)OP=2tQB=tPA=132t,要使四边形PABQ为平行四边形,则132t=t

(2)不变.

QBDEPA

AF=2QB=2t

PF=OA=13

SPQF=

(3)(2)知,PF=OA=13

QP=FQ,作QGx轴于G,则11t2t=2t+13﹣(11t),

t=

PQ=FP

t=2

FQ=FP

t=1

综上,当t=12时,PQF是等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴交于点AB,与轴交于点C。过点CCDx轴,交抛物线的对称轴于点D,连结BD。已知点A坐标为(-10)。

1)求该抛物线的解析式;

2)求梯形COBD的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为 参考数据:tan78°12′≈4.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点 O ABC 的边 AB 上一点,以 OB 为半径的O BC 于点 D,过点 D 的切线交 AC 于点 E,且 DEAC

(1)证明:ABAC

(2) ABcmBC=2cm,当点 O AB 上移动到使O 与边 AC 所在直线相切时O 的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点ABCD均在⊙O上,FB与⊙O相切于点BABCF交于点GOACF于点EACBF

(1)求证:FG=FB

(2)若tan∠F=,⊙O的半径为4,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中:①ac>0;②a+b+c<0;③4a﹣2b+c<0;④2a+b<0;⑤4ac﹣b2<4a;⑥a+b>0中,其中正确的个数为(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了一个圆形喷水池,在水池中心竖直安装了一根高米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为米处达到最高,水柱落地处离池中心米.

(1)请你建立适当的直角坐标系,并求出水柱抛物线的函数解析式;

(2)求出水柱的最大高度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示双曲线y=与y=﹣分别位于第三象限和第二象限,A是y轴上任意一点,B是y=﹣上的点,C是y=上的点,线段BC⊥x轴于D,且4BD=3CD,则下列说法:①双曲线y=在每个象限内,y随x的增大而减小;②若点B的横坐标为﹣3,则C点的坐标为(﹣3,);③k=4;④△ABC的面积为定值7,正确的有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC为等腰直角三角形,∠BAC=90°BC=1EAB上任意一动点,以CE为斜边作等腰RtCDE,连结AD,下列说法:①∠BCE=ACD;②△ACD∽△BCE;③△AED∽△ECB;④ADBC;⑤四边形ABCD的面积有最大值,且最大值为.其中正确的结论是_________.

查看答案和解析>>

同步练习册答案