【题目】随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了一个圆形喷水池,在水池中心竖直安装了一根高米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为米处达到最高,水柱落地处离池中心米.
(1)请你建立适当的直角坐标系,并求出水柱抛物线的函数解析式;
(2)求出水柱的最大高度是多少?
【答案】(1)y=-(0≤x≤3);(2)抛物线水柱的最大高度为m.
【解析】
试题分析:(1)以水管和地面交点为原点,原点与水柱落地点所在直线为x轴适当的直角坐标系,利用顶点式y=a(x-1)2+k,求解析式
(2)利用顶点式y=-(x-1)2+(0≤x≤3),知顶点坐标(1,),从而求出水柱的最大高度是米。
试题解析:(1)如图,以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐标系.
由题意可设抛物线的函数解析式为y=a(x-1)2+h(0≤x≤3)
抛物线过点(0,2)和(3,0),代入抛物线解析式得:
解得:
所以,抛物线的解析式为:y=-(x-1)2+(0≤x≤3),
化为一般形式为:y=-(0≤x≤3)
(2)由(1)知抛物线的解析式为y=-(x-1)2+(0≤x≤3),
当x=1时,y=,
所以,抛物线水柱的最大高度为m.
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,点E是边AD上一点,且AE=AB.
(1)作∠BCD的角平分线CF,交AD于F点,交BE于G点;(尺规作图,保留痕迹,不写画法)
(2)在(1)的条件下,
①求∠BGC的度数;
②设AB=a,BC=b,则线段EF= (用含a,b的式子表示);
③若AB=10,CF=12,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的顶点B、C在x轴的正半轴上,反个比例函数y= (k≠0)在第一象限的图象经过点A(m,2)和CD边上的点E(n, ),过点E作直线l∥BD交y轴于点F,则点F的坐标是( )
A. (0,- )B. (0,- )
C. (0,-3)D. (0,- )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:
(1)PE=PF;
(2)点P在∠BAC的平分线上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,我们规定:点关于“的衍生点”,,其中为常数且,如:点(,)关于“的衍生点”,即,即.
(1)求点关于“的衍生点” 的坐标;
(2)若点关于“的衍生点” ,求点的坐标;
(3)若点在轴的正半轴上,点关于“的衍生点” ,点关于“的衍生点” ,且线段的长度不超过线段长度的一半,请问:是否存在值使得到轴的距离是到轴距离的倍?若存在,请求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在13×7的网格中,每个小正方形边长都是1,其顶点叫做格点,如图A、B、D、E、M、P均为格点.
(1)请在网格中画□ABCD,要求C点在格点上.
(2)在(1)中□ABCD右侧画格点△EFG,并使EF=5,FG=3,EG=.
(3)以MP为对角线画矩形MNPQ(M、N、P、Q按逆时针方向排列),使矩形MNPQ的面积为10.
(4)在直线AE上有一点W,使WB+WM的值最小,则这个最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,边长为a,点O是对角线AC的中点,点E是BC边上的一个动点,OE⊥OF交AB边于点F,点G,H分别是点E,F关于直线AC的对称点,点E从点C运动到点B时,则图中阴影部分的面积是___________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com