精英家教网 > 初中数学 > 题目详情

【题目】为了倡导“节约用水,从我做起”,市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果绘制成了如图所示的条形统计图,则这组数据的众数和中位数分别是( )

A.40,20
B.11,11
C.11,12
D.11,11.5

【答案】D
【解析】解:由条形图知,约平均用水量最多的是11吨,即众数为11;

100个数据的中位数为第50、51个数据的平均数,即中位数为 =11.5,

所以答案是:D.

【考点精析】本题主要考查了中位数、众数的相关知识点,需要掌握中位数是唯一的,仅与数据的排列位置有关,它不能充分利用所有数据;众数可能一个,也可能多个,它一定是这组数据中的数才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:
①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=
其中正确的结论有( )

A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1y1=﹣x+b分别与x轴、y轴交于点A、点B,与直线l2y2x交于点C22).

1)若y1y2,请直接写出x的取值范围;

2)点P在直线l1y1=﹣x+b上,且△OPC的面积为3,求点P的坐标?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,要得到ABCD,只需要添加一个条件,这个条件不可以( )

A. 1=3 B. BBCD=180°

C. 2=4 D. DBAD=180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两同学用一副扑克牌中牌面数字分别是3,4,5,6的4张牌做抽数字游戏,游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,抽出的牌不放回,然后将剩下的牌洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数,若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请利用树状图或列表法说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料并完成任务.

莱昂哈德·欧拉是18世纪数学界最杰出的人物之一,瑞士著名的数学家、物理学家,他不但为数学界作出贡献,更把整个数学推至物理的领域;同时,也是数学史上研究成果最多的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学等的课本,《无穷小分析引论》《微分学原理》《积分学原理》等都成为数学界中的经典著作.因此,被称为历史上最伟大的两位数学家之一(另一位是卡尔·弗里德里克·高斯).在数学成就上,欧拉最先把关于的多项式用记号的形式来表示(可用其他字母代替,但不同的字母表示不同的多项式),例如,当时,多项式的值用来表示,即;当时,多项式的值用来表示,记为

任务:

已知

请你根据材料中代入求值的方法解决下列问题:

(1)求的值;

(2)求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:如图1,如果四边形ABCD满足ABADCBCD,∠B=∠D90°,那么我们把这样的四边形叫做“完美筝形”.将一张如图1所示的“完美筝形”纸片ABCD先折叠成如图2所示形状,再展开得到图3,其中CECF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB′FD′相交于点O.

简单应用:

(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是

(2)当图3中的∠BCD120°时,∠AEB′

拓展提升:

(3)当图2中的四边形AECF为菱形时,对应图3中的四边形CD′OB′是否是“完美筝形”?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,且∠B=60°,过C作⊙O的切线l,与直径AD的延长线交于点E,AF⊥l,垂足为F.

(1)求证:AC平分∠FAD;
(2)已知AF=3 ,求阴影部分面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.

(1)求证:PB是⊙O的切线;
(2)若PB=9,DB=12,求⊙O的半径.

查看答案和解析>>

同步练习册答案