精英家教网 > 初中数学 > 题目详情
2.解下列不等式(组),并把解集在数轴上表示出来:
(1)$\left\{\begin{array}{l}{5x-3<41}\\{4(x-1)+3≥2x}\end{array}\right.$
(2)$\frac{3y-1}{2}$<$\frac{10y+5}{6}$-1.

分析 (1)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;
(2)首先去分母,然后去括号、移项、合并同类项、系数化成1即可求解.

解答 解:(1)$\left\{\begin{array}{l}{5x-3<41…①}\\{4(x-1)+3≥2x…②}\end{array}\right.$,
解①得x<$\frac{44}{5}$,
解②得x≥$\frac{1}{2}$.

则不等式组的解集是$\frac{1}{2}$≤x<$\frac{44}{5}$;
(2)去分母,得3(3y-1)<10y+5-6,
去括号,得9y-3<10y+5-6,
移项,得9y-10y<5-6+3,
合并同类项,得-y<2,
系数化成1得y>-2.

点评 本题考查了不等式与不等式组的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.【材料阅读】阅读下列一段文字,然后回答下列问题.
已知平面内两点M(x1,y1),N(x2,y2),则这两点间的距离可用下列公式计算:
MN=$\sqrt{{(x}_{1}{-x}_{2})^{2}+{(y}_{1}{-y}_{2})^{2}}$.
例如:已知P(3,1)、Q(1,-2),则这两点间的距离PQ=$\sqrt{(3-1)^{2}+(1+2)^{2}}$=$\sqrt{13}$
【直接应用】
(1)已知A(2,-3)、B(-4,5),试求A、B两点间的距离;
(2)已知△ABC的顶点坐标分别为A(0,4)、B(-1,2)、C(4,2),你能判定△ABC的形状吗?请说明理由.
【深度应用】
(3)如图,在平面直角坐标系xOy中,二次函数y=x2-4的图象与x轴相交于两点A、B,(点A在点B的左边)
①求点A、B的坐标;
②设点P(m,n)是以点C(3,4)为圆心,1为半径的圆上一动点,求PA2+PB2的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,△ABC内接于⊙O,CA=CB,CD∥AB且与OA的延长线交于点D.
(1)判断CD与⊙O的位置关系,并说明理由;
(2)若∠ACB=120°,OA=2,求CD的长;
(3)在(2)条件下求阴影部分的面积.(结果可含π).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、E的面积分别为2,5,1,10.则正方形D的面积是2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如果|x+y-3|=2x+2y,那么(x+y)3的值为(  )
A.1B.-27C.1或-27D.1或27

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.在样本容量为160的频数直方图中,共有3个小长方形,若中间一个小长方形的高与其余两个小长方形高的和之比是2:3,则中间一组的频率为(  )
A.0.2B.0.25C.0.4D.0.6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图是正方形卡片A类、B类和长方形卡片C类.现有A类卡片4张,B类卡片1张,C类卡片4张,则这9张卡片能拼成的正方形的边长为(  )
A.a+2bB.2a+bC.2a+2bD.a+b

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.运动场的跑道一圈长400米.小健和小康分别做骑车和跑步运动,已知小健每分钟骑车路程比小康每分钟跑步路程的$\frac{4}{3}$倍还多50米.若两人从同一处同时同向出发.经过6分钟第二次相遇.求两人的运动速度.

查看答案和解析>>

科目:初中数学 来源:2017届湖北省襄阳市九年级下学期第一次月考数学试卷(解析版) 题型:单选题

一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角∠ACB=45°,则这个人工湖的直径AD为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案