精英家教网 > 初中数学 > 题目详情
21、已知关于x的一元二次方程x2+2(2-m)x+3-6m=0
(1)求证:无论m取什么实数,方程总有实数根;
(2)请任选一个m的值,使方程的根为有理数,并求出此时方程的根.
分析:(1)只要看根的判别式△=b2-4ac的值的符号就可以了;
(2)m可取比较简单的数,如0或1等,并通过解方程判断方程的根是否是有理数.
解答:解:(1)△=(4-2m)2-4×(3-6m)=4(m+1)2≥0,所以方程总有实数根;

(2)当m=0时,原方程化为:x2+4x+3=0,
(x+3)(x+1)=0,
解得x=-3或-1.
点评:要证明方程总有实数根,应证明△恒为非负数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2007•汕头)已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步练习册答案