【题目】如图,在正方形ABCD中,AB=2,点M为正方形ABCD的边CD上的动点(与点C,D不重合),连接BM,作MF⊥BM,与正方形ABCD的外角∠ADE的平分线交于点F.设CM=x,△DFM的面积为y,则y与x之间的函数关系式为________________.
【答案】y=-
【解析】
在BC上截取CH=CM,连接MH,则△MCH是等腰直角三角形,BH=MD,证出∠BHM=∠MDF,∠1=∠2,由ASA证明△BHM≌△MDF,再根据三角形面积公式求解即可.
证明:∵四边形ABCD是正方形,
∴CD=BC,∠C=∠CDA=90°=∠ADE,
∵DF平分∠ADE,
∴∠ADF=∠ADE=45°,
∴∠MDF=90°+45°=135°.
在BC上截取CH=CM,连接MH,如图,
则△MCH是等腰直角三角形,BH=MD,∴∠CHM=∠CMH=45°,
∴∠BHM=135°,
∴∠1+∠HMB=45°,∠BHM=∠MDF,
∵FM⊥BM,
∴∠FMB=90°,
∴∠2+∠BMH=45°,
∴∠1=∠2.
在△BHM与△MDF中,
,
∴△BHM≌△MDF(ASA),
∴BH=MD=2-x,
∴y与x之间的函数关系式为y=x(2-x)=-x2+x.
故答案为:y=-x2+x.
科目:初中数学 来源: 题型:
【题目】如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.
(1)求顶点D的坐标(用含a的代数式表示);
(2)若以AD为直径的圆经过点C.
①求抛物线的函数关系式;
②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;
③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.
(1)猜想DG与CF的数量关系,并证明你的结论;
(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,函数的图象过点.
求该函数的解析式;
过点分别向轴和轴作垂线,垂足为和,求四边形的面积;
求证:过此函数图象上任意一点分别向轴和轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.
(1)延长MP交CN于点E(如图②).
①求证:△BPM≌△CPE;
②求证:PM=PN;
(2)若直线a绕点A旋转到图③的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点D是直线BC上一动点(不与点B,C重合),在AD右侧作△ADE,使得AD=AE,∠DAE=∠BAC,联结DE,CE。
(1)当点D在BC边上时,求证:EC=DB;
(2)当EC∥AB,若△ABD的最小角为20°,请写出ADB的度数,并对其中一个答案加以证明。
答:∠ADB的度数除了20°,还可能是 (直接写出所有答案,并对其中一个答案加以证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点 A,B的坐标分别为(0,3),(1,0),△ABC是等腰直角三角形,∠ABC=90°.
(1)图1中,点C的坐标为 ;
(2)如图2,点D的坐标为(0,1),点E在射线CD上,过点B 作BF⊥BE交y轴于点F.
①当点E为线段CD的中点时,求点F的坐标;
②当点E在第二象限时,请直接写出F点纵坐标y的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com