精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点EEHDF,垂足为H,EH的延长线交DC于点G.

(1)猜想DGCF的数量关系,并证明你的结论;

(2)过点HMNCD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点PMN上一点,求△PDC周长的最小值.

【答案】(1)结论:CF=2DG,理由见解析;(2)PCD的周长的最小值为10+2

【解析】

(1)结论:CF=2DG.只要证明DEG∽△CDF即可;

(2)作点C关于NM的对称点K,连接DKMN于点P,连接PC,此时PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.

(1)结论:CF=2DG.

理由:∵四边形ABCD是正方形,

AD=BC=CD=AB,ADC=C=90°,

DE=AE,

AD=CD=2DE,

EGDF,

∴∠DHG=90°,

∴∠CDF+DGE=90°,DGE+DEG=90°,

∴∠CDF=DEG,

∴△DEG∽△CDF,

==

CF=2DG.

(2)作点C关于NM的对称点K,连接DKMN于点P,连接PC,

此时PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.

由题意:CD=AD=10,ED=AE=5,DG=,EG=,DH==

EH=2DH=2

HM==2,

DM=CN=NK==1,

RtDCK中,DK===2

∴△PCD的周长的最小值为10+2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,△ABC和△ADE中,AB=ACAD=AE,且∠BAC=DAE


1)求证:BD=CE
2)若点MN分别是BDCE的中点,如图2,连接AMANMN,若AC=6AE=4,∠EAC=60°,求AN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC在直角坐标系中,

(1)把△ABC向上平移3个单位,再向右平移2个单位得△A′B′C′,在图中画出两次平移后得到的图形△A′B′C′,并写出A′B′C′的坐标.

(2)如果△ABC内部有一点Q,根据(1)中所述平移方式得到对应点Q′,如果点Q′坐标是(mn),那么点Q的坐标是_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.

(1)求点C的坐标(用含a的代数式表示);

(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;

(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】绿水青山就是金山银山,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:

村庄

清理养鱼网箱人数/

清理捕鱼网箱人数/

总支出/

A

15

9

57000

B

10

16

68000

(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;

(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:

尺规作图:过圆外一点作圆的切线.

已知:P⊙O外一点.

求作:经过点P⊙O的切线.

小敏的作法如下:如图,

(1)连接OP,作线段OP的垂直平分线MNOP于点C.

(2)以点C为圆心,CO的长为半径作圆,交⊙OA,B两点.

(3)作直线PA,PB.

老师认为小敏的作法正确.

请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是   ;由此可证明直线PA,PB都是⊙O的切线,其依据是   .请写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=2,点M为正方形ABCD的边CD上的动点(与点C,D不重合),连接BM,作MF⊥BM,与正方形ABCD的外角∠ADE的平分线交于点F.设CM=x,△DFM的面积为y,则y与x之间的函数关系式为________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个整数能表示成(ab是正整数)的形式,则称这个数为吉祥数.例如,2吉祥数”,因为2=所以2吉祥数”,再如,因为M=x+2xy+2y=(x+y)+y(x+yy是正整数),所以M也是吉祥数

1)请你写一个最小的三位吉祥数_____,并判断40______“吉祥数”.(填是或不是)

2)已知S=x+y+2x6y+k(xy是正整数,k是常数),要使S吉祥数”,试求出符合条件的一个k值,并说明理由.

查看答案和解析>>

同步练习册答案