【题目】如图1,△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE.
(1)求证:BD=CE;
(2)若点M,N分别是BD,CE的中点,如图2,连接AM,AN,MN,若AC=6,AE=4,∠EAC=60°,求AN的长.
【答案】(1)见解析;(2).
【解析】
(1)由∠BAC=∠DAE知∠EAC=∠DAB,根据AB=AC、AD=AE即可证△CAE≌△BAD,从而得证;
(2)取AC的中点F,连接FN,过点N作NG⊥AC,据此可得NF∥AE、NF=AE=2,继而由∠GFN=∠EAC=60°得FG= FN=1、AG=4、NG=,利用勾股定理可得答案.
(1)∵∠BAC=∠DAE,
∴∠BAC-∠BAE=∠DAE-∠BAE,
∴∠EAC=∠DAB,
∵AB=AC、AD=AE,
∴△CAE≌△BAD,
∴BD=CE;
(2)取AC的中点F,连接FN,过点N作NG⊥AC于点G,
∵N是CE的中点,
∴NF∥AE,NF=AE=2,
∴∠GFN=∠EAC=60°,
∴∠FNG=30°,
∴FG=FN=1,
∴AG=1+3=4,NG=,
在Rt△ANG中,由勾股定理可得AN=.
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,E、F分别是AB、BC边的中点,EP⊥CD于点P,∠BAD=110°,则∠FPC的度数是( )
A. 35° B. 45° C. 50° D. 55°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中有三个点A(-3,2)、B(-4,-3)、C(-1,-1)
(1)连接A、B、C三点,请在右图中作出△ABC关于x轴对称的图形△A/B/C/,并直接写出对称点A/,B/,C/的坐标;
(2)用直尺在纵轴上找到一点P(0,n)满足PB/+PA的值最小(在图中标明点P的位置,并写出n的值在哪两个连续整数之间).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为1,AB、AD上各有一点P、Q,△APQ的周长为2,求∠PCQ.
为了解决这个问题,我们在正方形外以BC和AB延长线为边作△CBE,使得△CBE≌△CDQ(如图)
(1)△CBE可以看成由△CDQ怎样运动变化得到的?
(2)图中PQ与PE的长度有什么关系?为什么?
(3)请用(2)的结论证明△PCQ≌△PCE;
(4)根据以上三个问题的启发,求∠PCQ的度数.
(5)对于题目中的点Q,若Q恰好是AD的中点,求BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,AD=6,点E为AD的中点,点P为线段AB上一个动点,连接EP,将△APE沿EP折叠得到△EPF,连接CE,CF,当△ECF为直角三角形时,AP的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中,A(a,0),B(0,b),D(0,c),其中a,b,c满足2a2+b2+c2-2ab-8a-2c+17=0,过坐标O作直线BC交线段OA于点C.
(1)如图1,当∠ODA=∠OCB时,求点C的坐标;
(2)如图2,在(1)条件下,过O作OE⊥BC交AB于点E,过E作EF⊥AD交OA于点N,交BC延长线于F,求证:BF=OE+EF;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,E、F分别为线段AC上的两个点,且DE⊥AC于点E,BF⊥AC于点F,若AB=CD,AE=CF,BD交AC于点M.
(1)试猜想DE与BF的关系,并证明你的结论;
(2)求证:MB=MD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.
(1)求顶点D的坐标(用含a的代数式表示);
(2)若以AD为直径的圆经过点C.
①求抛物线的函数关系式;
②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;
③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.
(1)猜想DG与CF的数量关系,并证明你的结论;
(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com