精英家教网 > 初中数学 > 题目详情

【题目】阅读下面材料:

在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:

尺规作图:过圆外一点作圆的切线.

已知:P⊙O外一点.

求作:经过点P⊙O的切线.

小敏的作法如下:如图,

(1)连接OP,作线段OP的垂直平分线MNOP于点C.

(2)以点C为圆心,CO的长为半径作圆,交⊙OA,B两点.

(3)作直线PA,PB.

老师认为小敏的作法正确.

请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是   ;由此可证明直线PA,PB都是⊙O的切线,其依据是   .请写出证明过程.

【答案】直径所对圆周角为直角,经过半径外端且垂直于这条半径的直线是圆的切线.证明详见解析.

【解析】

根据圆周角定理以及切线的判定方法即可得解.

OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对圆周角为直角;

由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端且垂直于这条半径的直线是圆的切线

证明过程如下:

由作图可知OP⊙C的直径,

∴∠OAP=∠OBP=90°,即OA⊥PA、OB⊥PB,

∵OA、OB⊙O的半径,

∴OP⊙O的切线.

故答案为:直径所对圆周角为直角,经过半径外端且垂直于这条半径的直线是圆的切线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,E、F分别为线段AC上的两个点,且DEAC于点E,BFAC于点F,若AB=CD,AE=CF,BDAC于点M.

(1)试猜想DEBF的关系,并证明你的结论;

(2)求证:MB=MD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD中,PAD上一动点,连接BP,过点ABP的垂线,垂足为F,交BD于点E,交CD于点G.

(1)当AB=AD,且PAD的中点时,求证:AG=BP;

(2)在(1)的条件下,求的值;

(3)类比探究:若AB=3AD,AD=2AP,的值为  .(直接填答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点EEHDF,垂足为H,EH的延长线交DC于点G.

(1)猜想DGCF的数量关系,并证明你的结论;

(2)过点HMNCD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点PMN上一点,求△PDC周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰ABC中,AB=BC=4,把ABC沿AC翻折得到ADC.则

(1)四边形ABCD是 形;

(2)若B=120°,点P、E、F分别为线段AC、AD、DC上的任意1点,则PE+PF的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系中,有两定点是反比例函数图象上动点,当为直角三角形时,点坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数的图象过点

求该函数的解析式;

过点分别向轴和轴作垂线,垂足为,求四边形的面积;

求证:过此函数图象上任意一点分别向轴和轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.

(1)延长MP交CN于点E(如图②).

①求证:△BPM≌△CPE;

②求证:PM=PN;

(2)若直线a绕点A旋转到图③的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;

(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则点A2 019的坐标为____________

查看答案和解析>>

同步练习册答案