精英家教网 > 初中数学 > 题目详情

【题目】如图①,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.

(1)延长MP交CN于点E(如图②).

①求证:△BPM≌△CPE;

②求证:PM=PN;

(2)若直线a绕点A旋转到图③的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;

(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.

【答案】(1) ①见解析;②见解析;(2)见解析;(3)见解析.

【解析】

(1)①根据平行线的性质证得∠MBP=∠ECP再根据BP=CP,∠BPM=∠CPE即可得到;

②由△BPM≌△CPE,得到PM=PEPM=ME,而在Rt△MNE中,PN=ME,即可得到PM=PN;

(2)证明方法与②相同;

(3)四边形MBCN是矩形,只要证明三个角是直角即可;

(1)证明:①如图2:

∵BM⊥直线a于点M,CN⊥直线a于点N,

∴∠BMA=∠CNM=90°,

∴BM∥CN,

∴∠MBP=∠ECP,

又∵P为BC边中点,

∴BP=CP,

又∵∠BPM=∠CPE,

∴△BPM≌△CPE,

②∵△BPM≌△CPE,

∴PM=PE.

∴PM=ME,

∴在Rt△MNE中,PN=ME,

∴PM=PN.

(2)解:成立,如图3.

证明:延长MP与NC的延长线相交于点E,

∵BM⊥直线a于点M,CN⊥直线a于点N,

∴∠BMN=∠CNM=90°.

∴∠BMN+∠CNM=180°,

∴BM∥CN.

∴∠MBP=∠ECP,

又∵P为BC中点,

∴BP=CP,

又∵∠BPM=∠CPE,

在△BPM和△CPE中,

∴△BPM≌△CPE,

∴PM=PE,

∴PM=ME,

则Rt△MNE中,PN=ME.

∴PM=PN.

(3)解:如图4,四边形BMNC是矩形,

理由:∵MN∥BC,BM⊥AM,CN⊥MN,

∴∠AMB=∠ANC=90°,∠AMB+∠CBM=180°,

∴∠CBM=∠AMB=∠CNA=90°,

∴四边形BMNC是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC在直角坐标系中,

(1)把△ABC向上平移3个单位,再向右平移2个单位得△A′B′C′,在图中画出两次平移后得到的图形△A′B′C′,并写出A′B′C′的坐标.

(2)如果△ABC内部有一点Q,根据(1)中所述平移方式得到对应点Q′,如果点Q′坐标是(mn),那么点Q的坐标是_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:

尺规作图:过圆外一点作圆的切线.

已知:P⊙O外一点.

求作:经过点P⊙O的切线.

小敏的作法如下:如图,

(1)连接OP,作线段OP的垂直平分线MNOP于点C.

(2)以点C为圆心,CO的长为半径作圆,交⊙OA,B两点.

(3)作直线PA,PB.

老师认为小敏的作法正确.

请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是   ;由此可证明直线PA,PB都是⊙O的切线,其依据是   .请写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=2,点M为正方形ABCD的边CD上的动点(与点C,D不重合),连接BM,作MF⊥BM,与正方形ABCD的外角∠ADE的平分线交于点F.设CM=x,△DFM的面积为y,则y与x之间的函数关系式为________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:某商场经市场调查,预计一款夏季童装能获得市场青睐,便花费15000元购进了一批此款童装,上市后很快售罄.该店决定继续进货,由于第二批进货数量是第一批进货数量的2倍,因此单价便宜了10元,购进第二批童装一共花费了27000元.那该店所购进的第一批童装的价格是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于点P (xy),若点Q的坐标为(ax+yx+ay) 其中a为常数,则称点Q是点P“a级关联点",例如,点P(14)“3级关联点"Q (3×1+41+3×4) Q (713)

(1)已知点A (-26)级关联点是点A1,点B“2级关联点B1 (3 3) 求点A1和点B的坐标:

(2)已知点M (m-1 2m)“-3级关联点"M位于坐标轴上,求M的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点是点A(3,0),其部分图象如图,则下列结论:

2a+b=0;

b2﹣4ac<0;

③一元二次方程ax2+bx+c=0(a≠0)的另一个解是x=﹣1;

④点(x1,y1),(x2,y2)在抛物线上,若x1<0<x2,则y1<y2

其中正确的结论是_____(把所有正确结论的序号都填在横线上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个整数能表示成(ab是正整数)的形式,则称这个数为吉祥数.例如,2吉祥数”,因为2=所以2吉祥数”,再如,因为M=x+2xy+2y=(x+y)+y(x+yy是正整数),所以M也是吉祥数

1)请你写一个最小的三位吉祥数_____,并判断40______“吉祥数”.(填是或不是)

2)已知S=x+y+2x6y+k(xy是正整数,k是常数),要使S吉祥数”,试求出符合条件的一个k值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,BECD 垂足为 EBEDE=8BCDA

求证:(1BECDEA

2)若 MN 是边 AD 的垂直平分线,分别交 ADCD MN,且 CE=5,AEN 的周长.

查看答案和解析>>

同步练习册答案