精英家教网 > 初中数学 > 题目详情

【题目】抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点是点A(3,0),其部分图象如图,则下列结论:

2a+b=0;

b2﹣4ac<0;

③一元二次方程ax2+bx+c=0(a≠0)的另一个解是x=﹣1;

④点(x1,y1),(x2,y2)在抛物线上,若x1<0<x2,则y1<y2

其中正确的结论是_____(把所有正确结论的序号都填在横线上)

【答案】①③

【解析】

根据对称轴x=1可判定①正确;根据抛物线与x轴有2个交点可判定②错误;根据二次函数的对称性可判定③正确;根据二次函数的增减性及x1x2的位置可判定④错误.

∵x==1,即b=-2a,∴2a+b=0;①正确;

∵抛物线与x轴有2个交点,∴b2-4ac>0;②错误;

∵抛物线的对称轴为直线x=1,点(3,0)关于直线x=1的对称点的坐标为(-1,0),

∴方程ax2+bx+c=0的两个根是x1=-1,x2=3;③正确;

根据二次函数的增减性,x1<0<x2x1x2可能在对称轴为直线x=1的两侧,无法判定y1、y2的大小,④错误.

故答案为:①③

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD中,PAD上一动点,连接BP,过点ABP的垂线,垂足为F,交BD于点E,交CD于点G.

(1)当AB=AD,且PAD的中点时,求证:AG=BP;

(2)在(1)的条件下,求的值;

(3)类比探究:若AB=3AD,AD=2AP,的值为  .(直接填答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数的图象过点

求该函数的解析式;

过点分别向轴和轴作垂线,垂足为,求四边形的面积;

求证:过此函数图象上任意一点分别向轴和轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.

(1)延长MP交CN于点E(如图②).

①求证:△BPM≌△CPE;

②求证:PM=PN;

(2)若直线a绕点A旋转到图③的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;

(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读下列的解答过程,然后再解答:

形如的化简,只要我们找到两个正数ab,使a+bmabn,使得,那么便有:ab

例如:化简

解:首先把化为,这里m7n12,由于4+374×312

=

1)填空:      

2)化简:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=AC,点D是直线BC上一动点(不与点BC重合),在AD右侧作ADE,使得AD=AE,∠DAE=BAC,联结DECE

1)当点DBC边上时,求证:EC=DB

2)当ECAB,若ABD的最小角为20°,请写出ADB的度数,并对其中一个答案加以证明。

答:∠ADB的度数除了20°,还可能是 (直接写出所有答案,并对其中一个答案加以证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小马、小虎两人共同计算一道题:(x+a)(2x+b).由于小马抄错了a的符号,得到的结果是2x27x+3,小虎漏抄了第二个多项式中x的系数得到的结果是x2+2x3

1)求ab的值;

2)细心的你请计算这道题的正确结果;

3)当x=﹣1时,计算(2)中的代数式的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则点A2 019的坐标为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A、B、C、D、E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:

(1)补全条形统计图;

(2)求这30名职工捐书本数的平均数、众数和中位数;

(3)估计该单位750名职工共捐书多少本?

查看答案和解析>>

同步练习册答案